
18.335 Problem Set 1

Due Monday, 20 September 2010.

Problem 1: Gaussian elimination

Trefethen, problem 20.4.

Problem 2: Asymptotic notation

This problem asks a few simple questions to make sure that you understand the asymptotic notations
O, Ω, and Θ as defined in the handout in class, and also to make sure you are comfortable with
simple proofs. (A detailed review of asymptotic notation can be found in any computer-science
textbook, or on many sites online.)

(a) If f(n) is Θ[F (n)] and g(n) is Θ[G(n)] for nonnegative functions f , g, F , and G, prove that
f(n) + g(n) is Θ[F (n) + G(n)].

(b) Prove that f(n) is O[g(n)] if and only if g(n) is Ω[f(n)]. [For example, n2 is O(n3) and n3 is
Ω(n2).]

(c) If f(n) is O[F (n)], prove that any function that is O[f(n) + c F (n)] must also be O[F (n)] for
any constant c 6= 0—that is, if we regard O[· · ·] as a set of functions, prove O[f(n)+c F (n)] ⊆
O[F (n)]. [For example, O(n2 +3n3) = O(n3).] Is it also true that Θ[f(n)+c F (n)] ⊆ Θ[F (n)]
for any c 6= 0 if f(n) is O[F (n)]? Explain.

(d) Explain why the statement, “The running time of this algorithm is O(n2) or worse,” cannot
provide any information about the algorithm.

Problem 3: Caches and matrix multiplications

In class, we considered the performance and cache complexity of matrix multiplication A = BC,
especially for square m×m matrices, and showed how to reduce the number of cache misses using
various forms of blocking. In this problem, you will be comparing optimized matrix-matrix products
to optimized matrix-vector products, using Matlab.

(a) The code matmul_bycolumn.m posted on the 18.335 web page computes A = BC by multiply-
ing B by each column of C individually (using Matlab’s highly-optimized BLAS matrix-vector
product). Benchmark this: plot the flop rate for square m ×m matrices as a function of m,
and also benchmark Matlab’s built-in matrix-matrix product and plot it too. For example,
Matlab code to benchmark Matlab’s m × m products for m = 1, . . . , 1000, storing the flop
rate (2m3/nanoseconds) in an array gflops(m), is:

gflops = zeros(1,1000);
for m = 1:1000

A = rand(m,m);
B = rand(m,m);
t = 0;
iters = 1;
% run benchmark for at least 0.1 seconds
while (t < 0.1)

tic
for iter = 1:iters

1



C = A * B;
end
t = toc; % elapsed time in seconds
iters = iters * 2;

end
gflops(m) = 2*m^3 * 1e-9 / (t * 2/iters);
disp(sprintf(’gflops for m=%d = %g after %d iters’,m,gflops(m),iters/2));
drawnow update;

end
plot([1:1000], gflops, ’r-’)

(b) Compute the cache complexity (the asymptotic number of cache misses in the ideal-cache
model, as in class) of an m × m matrix-vector product implemented the “obvious” way (a
sequence of row·column dot products).

(c) Propose an algorithm for matrix-vector products that obtains a better asymptotic cache
complexity (or at least a better constant coefficient, e.g. going from ∼ 3m2 to ∼ 2m2, even if
it is still the same Θ[· · ·] complexity) by dividing the operation into some kind of blocks.

(d) Assuming Matlab uses something like your “improved” algorithm from part (c) to do matrix-
vector products, compute the cache complexity of matmul_bycolumn. Compare this to the
cache complexity of the blocked matrix-matrix multiply from class. Does this help to explain
your results from part (a)?

Problem 4: Caches and backsubstitution
In this problem, you will consider the impact of caches (again in the ideal-cache model from class)
on the problem of backsubstitution: solving Rx = b for x, where R is an m ×m upper-triangular
matrix (such as might be obtained by Gaussian elimination). The simple algorithm you probably
learned in previous linear-algebra classes (and reviewed in the book, lecture 17) is (processing the
rows from bottom to top):

xm = bm/rmm

for j = m− 1 down to 1
xj = (bj −

∑m
k=j+1 rjkxk)/rjj

Suppose that X and B are m×n matrices, and we want to solve RX = B for X—this is equivalent
to solving Rx = b for n different right-hand sides b (the n columns of B). One way to solve the
RX = B for X is to apply the standard backsubstitution algorithm, above, to each of the n columns
in sequence.

(a) Give the asymptotic cache complexity Q(m, n; Z) (in asymptotic Θ notation, ignoring constant
factors) of this algorithm for solving RX = B.

(b) Suppose m = n. Propose an algorithm for solving RX = B that achieves a better asymptotic
cache complexity (by cache-aware/blocking or cache-oblivious algorithms, your choice). Can
you gain the factor of 1/

√
Z savings that we showed is possible for square-matrix multiplica-

tion?

2


