18.335 Problem Set 5
Due Monday, 2 November 2009.

Problem 1:
(a) Trefethen, 36.3. Plot the error in this eigenvalue as a function of how many Ax matrix-vector multiplies you perform (use a semilog or log-log scale as appropriate). (The files lanczos.m and A363.m posted on the web page are helpful.)
(b) Same problem, but use restarted Lanczos: after every 10 iterations of Lanczos, restart with the best Ritz vector from those 10 iterations. Again, plot the error vs. matrix-vector multiply count.
(c) The above questions asked for the minimum-λ eigenvalue (which may be negative). Plot what happens if, instead, you try to get the minimum-|λ| eigenvalue by these techniques. (Aside: a better way is to use Lanczos on A−1, but that requires a fast way to solve Ax = b in order to multiply by A−1.)

Problem 2:
(a) Trefethen, problem 38.6. (The files SD.m and A386.m on the web page are helpful.)

Problem 3:
In problem 3 of the Fall 2008 midterm for 18.335, it was claimed that you could use the conjugate-gradient algorithm for a Hermitian positive semidefinite matrix A, with a random starting guess, to find a vector in the null space (see the midterm solutions). Demonstrate this by means of an example, in Matlab, and plot the norm of the residual vs. iteration. (You can construct a random positive-semidefinite matrix A via, for example, B=rand(198,200); A = B' * B).