
18.335 Problem Set 2

Due Friday, 2 October 2009.

Problem 1: Floating-point

(a) Trefethen, probem 13.2. (For part c, you
can use Matlab, which employs IEEE double
precision by default.)

(b) A generalization of Trefethen, problem 14.2:
given a function g(x) that is analytic (i.e.,
has a Taylor series) for |x| sufficiently small,
and g′(0) 6= 0, show that g(O(ǫ)) = g(0) +
g′(0)O(ǫ).

Problem 2: Addition

This problem is about the floating-point error in-
volved in summing n numbers, i.e. in computing
the function f(x) =

∑n
i=1

xi for x ∈ F
n (F being

the set of floating-point numbers), where the sum
is done in the most obvious way, in sequence. In
pseudocode:

sum = 0
for i = 1 to n

sum = sum + xi

f(x) = sum

For analysis, it is a bit more convenient to define
the process inductively:

s0 = 0

sk = sk−1 + xk for 0 < k ≤ n,

with f(x) = sn. When we implement this in
floating-point, we get the function f̃(x) = s̃n,
where s̃k = s̃k−1⊕xk, with ⊕ denoting (correctly
rounded) floating-point addition.

(a) Show that f̃(x) = (x1 + x2)
∏n

k=2
(1 + ǫk) +

∑n
i=3

xi

∏n
k=i(1+ǫk), where the numbers ǫk

satisfy |ǫk| ≤ ǫmachine.

(b) Show that
∏n

k=i(1+ǫk) = 1+δi where |δi| ≤
(n − i + 1)ǫmachine + O(ǫ2machine).

(c) Show that the error can be bounded as:
|f̃(x) − f(x)| ≤ nǫmachine

∑n
i=1

|xi|.

(d) Suppose that the ǫk values are
uniformly randomly distributed in
[−ǫmachine, +ǫmachine]. Show that

the mean error can be bounded by
|f̃(x) − f(x)| = O

(√
nǫmachine

∑n
i=1

|xi|
)

.
(Hint: google “random walk”...you can
just quote standard statistical results for
random walks, no need to copy the proofs.)

(e) Compare your error bounds above to
numerical experiments in Matlab. Here,
we will use an old trick to compute the
floating-point errors: compare the results
computed in one precision to the “exact”
results computed in a higher precision.
In particular, we will use the Matlab
single() function to accumulate the sum
in single precision, rather than Matlab’s
default double precision. Plot the error
|f̃(x)−f(x)|/ ∑

i |xi| as a function of n on a
log-log scale (Matlab’s loglog command),
and explain your observation in terms of
your results above.1

This is implemented in the example
file loopsum.m, posted on the course page,
which computes the sum f(x) =loopsum(x)

via the above algorithm in single precision.
For your numerical experiment, compute
the sum of n random inputs x ∈ [0, 1)n

via Matlab’s rand(1,n) function. You can
then compute |f̃(x) − f(x)|/ ∑

i |xi| for a
given n via

x = rand(1,n);

err = abs(loopsum(x) - sum(x)) /

sum(abs(x));

Problem 3: Addition, another way

Here you will analyze f(x) =
∑n

i=1
xi as in prob-

lem 2, but this time you will compute f̃(x) in a
different way. In particular, compute f̃(x) by
a recursive divide-and-conquer approach, recur-
sively dividing the set of values to be summed in
two halves and then summing the halves:

f̃(x) =











0 if n = 0

x1 if n = 1

f̃(x1:⌊n/2⌋) ⊕ f̃(x⌊n/2⌋+1:n) if n > 1

,

1Use enough n values to get a clear result. e.g. the

command n = round(logspace(2,6,100)) gives 100 log-

arithmically spaced n values from 10
2 to 10

6.

1

where ⌊y⌋ denotes the greatest integer ≤ y (i.e.
y rounded down). In exact arithmetic, this com-
putes f(x) exactly, but in floating-point arith-
metic this will have very different error charac-
teristics than the simple loop-based summation
in problem 2.

(a) For simplicity, assume n is a power of 2
(so that the set of numbers to add divides
evenly in two at each stage of the recur-
sion). With an analysis similar to that
of problem 2, prove that |f̃(x) − f(x)| ≤
ǫmachine log2(n)

∑n
i=1

|xi| + O(ǫ2machine).
That is, show that the worst-case error
bound grows logarithmically rather than lin-

early with n!

(b) If the floating-point rounding errors are ran-
domly distributed as in problem 2, estimate
the average-case error bound.

(c) Pete R. Stunt, a Microsoft employee, com-
plains, “While doing this kind of recursion
may have nice error characteristics in the-
ory, it is ridiculous in the real world because
it will be insanely slow—I’m proud of my
efficient software and can’t afford to have
a function-call overhead for every number I
want to add!” Explain to Pete how to im-
plement a slight variation of this algorithm
with the same logarithmic error bounds
(possibly with a worse constant factor) but
roughly the same performance as a simple
loop (hint: look at how I implemented re-
cursive matrix multiplication in my cache-
oblivious handout from lecture 3).2

(d) On the course web page, I’ve posted
a file div2sum.m that computes
f̃(x) =div2sum(x) by the above algo-
rithm. Modify it to not be horrendously
slow via your suggestion in (c), and then
plot its errors for random inputs as a
function of n as in problem 2. Are your
results consistent with your error estimates
above?

(e) Suppose we now multiply two m × m ran-
dom matrices A and B (∈ [0, 1)m×m, uni-
formly distributed) to form C = AB. If you

2In fact, there is a common real-world algorithm that

does summation in precisely this recursive way: the

Cooley-Tukey fast Fourier transform.

look at any given entry cij of C, how quickly
do you expect the errors to grow with m if
you compute AB via the simple 3-loop row-
column algorithm? What if you use the op-
timal cache-oblivious algorithm from class?

Problem 4: Stability

(a) Trefethen, exercise 15.1.

(b) Trefethen, exercise 16.1.

2

