
18.335 Problem Set 6

Due Monday, 1 December.

Problem 1: Convexity

Recall from class that aconvex functionis a functionf(x) such thatf(αx+(1−α)y) ≤ αf(x)+(1−α)f(y),
for α ∈ [0, 1], wherex ∈ R

n. A convex setX ⊆ R
n satisfies the property that ifx andy are inX , then so

is the line connectingx andy, i.e. so isαx + (1 − α)y for α ∈ [0, 1].

(a) Show that the intersection of two convex sets is convex.

(b) Show that, iffi(x) is a convex function, then the set ofx wherefi(x) ≤ 0 is a convex set.

As a consequence of (a) and (b), the feasible region for constraintsfi(x) ≤ 0, i = 1, . . . , m, is a convex set
if the constraint functions are convex.

Problem 2: Nonlinear fitting

One well-known application of nonlinear optimization is the problem of nonlinear fitting, also called non-
linear regression: you have a bunch of data points(xi, yi), and you want to fit them to a functionf(x) with
some unknown parameters, where the parameters enter the function in a nonlinear way. A common problem
is to find aleast-squares fit, the fit parameters minimizing the sum-of-squares error

∑
i
[f(xi) − yi]

2. Here,
you’ll do nonlinear fitting using the NLopt library, via Matlab. It is installed on Athena (x86 Linux machiens
only)—do “add stevenj” at the Athena prompt, and then, in Matlab, typepath(path,’/mit/stevenj/Public/nlopt_i386_linu
to tell Matlab where to find NLopt.

In this problem you will fit a set of data points to a Lorentzianline shape (which often arises in resonant
processes, e.g. looking at absorption lines in spectroscopy, or in NMR experiments). (There are actually
much more sophisticated and robust techniques for the specific problem of fitting Lorentzian peaks, but we
won’t use them here.) That is, we have a bunch of data points(xi, yi) that we want to fit to a curve of the
form:

f(x) =
A

(x − ω)2 + Γ2

in terms of some unknown “resonant frequency”ω, “lifetime” Γ, and amplitudeA.
The file lorentzdata.m on the course page contains a function[x,y] = lorentzdata(N , A, ω, Γ, noise) that

generatesN random “data” points based on the Lorentzian peak with paramtersA, ω, andΓ, with some
random noise of amplitudenoiseadded in. The file lorentzfit.m computes the sum-of-squares error given a
vector p = [A, ω, Γ] of the fit parameters and the point arrays x and y.

(a) Try fitting 200 random data points fromA = 1, ω = 0, andΓ = 1, with noise±0.1, to minimize the
sum-of-squares error, using:

[x,y] = lorentzdata(200, 1, 0, 1, 0.1);
stop.xtol_rel = 1e-8; stop.verbose = 1;
[p, errmin] = nlopt_minimize(NLOPT_LN_NEWUOA_BOUND,

@lorentzfit, {x,y},
[-inf,-inf,0], [inf,inf,inf],
[0,1,2], stop);

This is calling NLopt to do the minimization with a derivative-free algorithm called NEWUOA that
constructs approximate quadratic models of the objective function (lorentzfit). Note the [-inf,-inf,0],
[inf,inf,inf] arguments, which give lower and upper boundsfor the parameters[A, ω, Γ] (which are

1



unconstrained except that we requireΓ ≥ 0). The last line gives an initial “guess”A = 0, ω = 1, Γ =
2. The optimization terminates when an estimated fractionalerror10−8 is reached on the parameters.
Plot the fit curve, which is returned in the parameters p0, andthe data points to verify that the fit looks
reasonable. Do the fit parameters vary significantly depending on the initial guess?

(b) Because of the line “stop.verbose=1”, you can see how many function evaluations are required by the
optimization algorithm to converge. Change stop.xtol_relto zero (no tolerance), and set stop.minf_max
= errmin0 * 1.0001. This will stop the optimization when the objective function gets within10−4 of
the previous value (errmin0), which allows us to compare different algorithms easily—we can see how
many iterations are required to reach the same value of the objective function. With this new stopping
criteria, compare the number of iterations for NEWUOA (NLOPT_LN_NEWUOA_BOUND) with a
different algorithm that constructs only linear approximations of the objective function (NLOPT_LN_COBYLA),
with the Nelder-Mead simplex algorithm (NLOPT_LN_NELDERMEAD).

(c) All of the previous algorithms were derivative-free (they don’t use the gradient of the objective, only
its values). However lorentzfit also optionally returns thegradient, and we can use that. With the same
stopping criterion as in the previous part, try the gradient-based algorithms NLOPT_LD_MMA and
NLOPT_LD_LBFGS. LBFGS iteratively constructs quadratic approximations that try to match the
first and second derivative (similar in spirit to NEWUOA), while MMA uses only the first derivative;
what is the impact of this on the rate of convergence?

(d) Now, modify lorentzdata and lorentzfit so that the data isthe sum oftwo overlapping Lorentzians:
A = 1, ω = 0, andΓ = 1, andA = 2, ω = 1, andΓ = 1.5, with noise = 0.01. Try fitting
again with any of the algorithms from above, changing the stopping criteria to stop.xtol_rel=1e-4 and
stop.minf_max=-inf. Try different starting points; do youget more than one local minimum? How
close does your initial guess need to be to the “correct” answer in order to recover something like the
parameters you used to generate the data?

(e) Try the previous part, but use one of theglobaloptimization algorithms, like NLOPT_GN_DIRECT_L
or NLOPT_GD_MLSL_LDS, or NLOPT_GN_CRS2_LM (see the NLopt manual for what these algo-
rithms are). You’ll need to specify finite search-box constraints; use [0,0,0,0,0,0] for the lower bounds
and [5,5,5,5,5,5] for the upper bounds. You’ll also need to change the stopping conditions. Change
stop.xtol_rel = 0 and and just vary the maximum number of function evaluations—set stop.maxeval =
1000 to start with (at most 1000 function evaluations). How big does the number of function evalua-
tions need to be to recover (roughly) the parameters you usedto generate the data? Is there a different
global optimization algorithm in NLopt that requires significantly fewer evaluations for similar accu-
racy?

2


