
18.335 Problem Set 4

Due Monday, 20 October 2008.

Problem 1: Schur fine

In class, we showed that any squarem×m matrixA
can be factorized asA = QTQ∗, whereQ is unitary
andT is an upper-triangular matrix (with the same
eigenvalues asA).

(a) A is called “normal” if AA∗ = A∗A. Show
that this impliesTT ∗ = T ∗T . From this,
show thatT must be diagonal. Hence, any nor-
mal matrix (e.g. unitary or Hermitian matrices)
must be unitarily diagonalizable.Hint: consider
the diagonal entries ofTT ∗ andT ∗T , starting
from the (1,1) entries and proceeding diagonally
downwards by induction.

(b) Given the Schur factorization of an arbitaryA
(not necessarily normal), describe an algorithm
to find the eigenvalues and eigenvectors ofA,
assuming for simplicity that all the eigenvalues
are distinct. The flop count should be asymptot-
ically ∼ Km3; give the constantK.

Problem 2: Hessenberg ahead!

In class, we described an algorithm to find the Hes-
senberg factorizationA = QHQ∗ of an arbitrary
matrix A, whereH is upper-triangular plus nonzero
elements just below the diagonal, andH has the
same eigenvalues asA. SupposeA is Hermitian, in
which caseH is Hermitian and tridiagonal. Given
the Hessenberg factorizationH , we mentioned in
class that many things become much easier, e.g. we
can evaluatep(z) = det(A− zI) = det(H − zI) in
O(m) operations for a givenz.

(a) LetB be an arbitrarym×m tridiagonal matrix.
Argue thatdetB = Bm,m detB1:m−1,1:m−1−

Bm−1,mBm,m−1 detB1:m−2,1:m−2.. Use this
recurrence relation to write a Matlab function
evalpoly.m that evaluatesp(z) in O(m)
time, given the tridiagonalH and z as argu-
ments. Check that your function works by com-
paring it to computingdet(H − zI) directly
with the Matlabdet function.

(b) Explain how, given the tridiagonalH , we can
compute also the derivativep′(z) for a givenz

in O(m) operations. (Not the coefficients of the
polynomialp′, just its value atz!). Modify your
evalpoly.m routine to return bothp(z) and its
derivativep′(z). That is, your function should
look like:
[p,pderiv] = evalpoly(H,z)
......compute p, pderiv.....
Check that your function works by comparing
yourp′(z) to [p(z +∆z)−p(z−∆z)]/2∆z for
variousz and small∆z.

(c) Using your function evalpoly, implement
Newton’s method to compute some eigenval-
ues of a random real-symmetric matrix, and
compare them to those returned by Matlab’s
eig function—how many significant digits of
accuracy do you get?

That is, to get a random real-symmetric
A, compute X=rand(m); A=X’*X; ....
then, computeH=hess(A); to getH . Then
compute the eigenvalues witheig(A), and
apply Newton’s method starting at a few
different points to converge to some different
eigenvalues.

Problem 3: Q’s ‘R us

(a) Trefethen, problem 27.5

(b) Trefethen, problem 28.2

Reminder: final project proposals

A half-page final-project proposal is due on October
31, outlining the goal and scope of your proposed
paper. Problems motivated by your research are per-
fectly fine, although you shouldn’t simply recycle
something you’ve already done. The only restriction
is that, since PDEs are covered in 18.336 and other
courses, I don’t want projects where the primary fo-
cus is how to discretize the PDE (e.g. no projects
on discontinuous Galerkin methods or stable time-
stepping, please). It is fine to take a discretized PDE
asinput, however, and then work on solvers, precon-
ditioning, optimization, etcetera. Methods for ODEs
are also fair game (especially recent developments
that go beyond classic Runge-Kutta). One source of
ideas might be to thumb through a copy ofNumerical
Recipes or a similar book and find a topic that inter-
ests you. Then go read some recent review papers on
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that topic (overview books likeNumerical Recipes
are not always trustworthy guides to a specific field).
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