
18.335 Problem Set 2Due Monday, 29 September 2008.Problem 1: Floating-point(a) Trefethen, probem 13.2. (For part 
, you
an use Matlab, whi
h employs IEEE doublepre
ision by default.)(b) A generalization of Trefethen, problem 14.2:given a fun
tion g(x) that is analyti
 (i.e.,has a Taylor series) for |x| su�
iently small,and g′(0) 6= 0, show that g(O(ǫ)) = g(0) +
g′(0)O(ǫ).Problem 2: AdditionThis problem is about the �oating-point error in-volved in summing n numbers, i.e. in 
omputingthe fun
tion f(x) =

∑n
i=1

xi for x ∈ F
n (F beingthe set of �oating-point numbers), where the sumis done in the most obvious way, in sequen
e. Inpseudo
ode:sum = 0for i = 1 to nsum = sum + xi

f(x) = sumFor analysis, it is a bit more 
onvenient to de�nethe pro
ess indu
tively:
s0 = 0

sk = sk−1 + xk for 0 < k ≤ n,with f(x) = sn. When we implement this in�oating-point, we get the fun
tion f̃(x) = s̃n,where s̃k = s̃k−1⊕xk, with ⊕ denoting (
orre
tlyrounded) �oating-point addition.(a) Show that f̃(x) = (x1 + x2)
∏n

k=2
(1 + ǫk) +

∑n
i=3

xi

∏n
k=i(1+ǫk), where the numbers ǫksatisfy |ǫk| ≤ ǫma
hine.(b) Show that ∏n

k=i(1+ǫk) = 1+δi where |δi| ≤
(n − i + 1)ǫma
hine + O(ǫ2ma
hine).(
) Show that the error 
an be bounded as:
|f̃(x) − f(x)| ≤ nǫma
hine∑n

i=1
|xi|.(d) Suppose that the ǫk values areuniformly randomly distributed in

[−ǫma
hine, +ǫma
hine]. Show that

the mean error 
an be bounded by
|f̃(x) − f(x)| = O

(√
nǫma
hine∑n

i=1
|xi|

).(Hint: google �random walk�...you 
an justquote standard results for random walks,no need to 
opy the proofs.)(e) Compare your error bounds above tonumeri
al experiments in Matlab. Here,we will use an old tri
k to 
ompute the�oating-point errors: 
ompare the results
omputed in one pre
ision to the �exa
t�results 
omputed in a higher pre
ision.In parti
ular, we will use the Matlabsingle() fun
tion to a

umulate the sumin single pre
ision, rather than Matlab'sdefault double pre
ision. Plot the error
|f̃(x)−f(x)|/ ∑

i |xi| as a fun
tion of n on alog-log s
ale (Matlab's loglog 
ommand),and explain your observation in terms ofyour results above.1This is implemented in the example�le loopsum.m, posted on the 
ourse page,whi
h 
omputes the sum f(x) =loopsum(x)via the above algorithm in single pre
ision.For your numeri
al experiment, 
omputethe sum of n random inputs x ∈ [0, 1)nvia Matlab's rand(1,n) fun
tion. You 
anthen 
ompute |f̃(x) − f(x)|/ ∑

i |xi| for agiven n viax = rand(1,n);err = abs(loopsum(x) - sum(x)) /sum(abs(x));Problem 3: Addition, another wayHere you will analyze f(x) =
∑n

i=1
xi as in prob-lem 2, but this time you will 
ompute f̃(x) in adi�erent way. In parti
ular, 
ompute f̃(x) bya re
ursive divide-and-
onquer approa
h, re
ur-sively dividing the set of values to be summed intwo halves and then summing the halves:

f̃(x) =











0 if n = 0

x1 if n = 1

f̃(x1:⌊n/2⌋) ⊕ f̃(x⌊n/2⌋+1:n) if n > 1

,1Use enough n values to get a 
lear result. e.g. the
ommand n = round(logspa
e(2,6,100)) gives 100 log-arithmi
ally spa
ed n values from 10
2 to 10
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where ⌊y⌋ denotes the greatest integer ≤ y (i.e.
y rounded down). In exa
t arithmeti
, this 
om-putes f(x) exa
tly, but in �oating-point arith-meti
 this will have very di�erent error 
hara
-teristi
s than the simple loop-based summationin problem 2.(a) For simpli
ity, assume n is a power of 2(so that the set of numbers to add dividesevenly in two at ea
h stage of the re
ur-sion). With an analysis similar to thatof problem 2, prove that |f̃(x) − f(x)| ≤

ǫma
hine log2(n)
∑n

i=1
|xi| + O(ǫ2ma
hine).That is, show that the worst-
ase errorbound grows logarithmi
ally rather than lin-early with n!(b) If the �oating-point rounding errors are ran-domly distributed as in problem 2, estimatethe average-
ase error bound.(
) Pete R. Stunt, a Mi
rosoft employee, 
om-plains, �While doing this kind of re
ursionmay have ni
e error 
hara
teristi
s in the-ory, it is ridi
ulous in the real world be-
ause it will be insanely slow�I'm proudof my e�
ient software and 
an't a�ordto have a fun
tion-
all overhead for everynumber I want to add!� Explain to Petehow to implement a slight variation of thisalgorithm with the same logarithmi
 errorbounds (possibly with a worse 
onstant fa
-tor) but roughly the same performan
e as asimple loop.2(d) On the 
ourse web page, I've posteda �le div2sum.m that 
omputes

f̃(x) =div2sum(x) by the above algo-rithm. Modify it to not be horrendouslyslow via your suggestion in (
), and thenplot its errors for random inputs as afun
tion of n as in problem 2. Are yourresults 
onsistent with your error estimatesabove?(e) Suppose we now multiply two m × m ran-dom matri
es A and B (∈ [0, 1)m×m, uni-formly distributed) to form C = AB. If youlook at any given entry cij of C, how qui
klydo you expe
t the errors to grow with m if2In fa
t, there is a 
ommon real-world algorithm thatdoes summation in pre
isely this re
ursive way: theCooley-Tukey fast Fourier transform.

you 
ompute AB via the simple 3-loop row-
olumn algorithm? What if you use the op-timal 
a
he-oblivious algorithm from 
lass?Problem 4: Stability(a) Trefethen, exer
ise 15.1.(b) Trefethen, exer
ise 16.1.

2


