
18.335 Problem Set 2Due Monday, 29 September 2008.Problem 1: Floating-point(a) Trefethen, probem 13.2. (For part , youan use Matlab, whih employs IEEE doublepreision by default.)(b) A generalization of Trefethen, problem 14.2:given a funtion g(x) that is analyti (i.e.,has a Taylor series) for |x| su�iently small,and g′(0) 6= 0, show that g(O(ǫ)) = g(0) +
g′(0)O(ǫ).Problem 2: AdditionThis problem is about the �oating-point error in-volved in summing n numbers, i.e. in omputingthe funtion f(x) =

∑n
i=1

xi for x ∈ F
n (F beingthe set of �oating-point numbers), where the sumis done in the most obvious way, in sequene. Inpseudoode:sum = 0for i = 1 to nsum = sum + xi

f(x) = sumFor analysis, it is a bit more onvenient to de�nethe proess indutively:
s0 = 0

sk = sk−1 + xk for 0 < k ≤ n,with f(x) = sn. When we implement this in�oating-point, we get the funtion f̃(x) = s̃n,where s̃k = s̃k−1⊕xk, with ⊕ denoting (orretlyrounded) �oating-point addition.(a) Show that f̃(x) = (x1 + x2)
∏n

k=2
(1 + ǫk) +

∑n
i=3

xi

∏n
k=i(1+ǫk), where the numbers ǫksatisfy |ǫk| ≤ ǫmahine.(b) Show that ∏n

k=i(1+ǫk) = 1+δi where |δi| ≤
(n − i + 1)ǫmahine + O(ǫ2mahine).() Show that the error an be bounded as:
|f̃(x) − f(x)| ≤ nǫmahine∑n

i=1
|xi|.(d) Suppose that the ǫk values areuniformly randomly distributed in

[−ǫmahine, +ǫmahine]. Show that

the mean error an be bounded by
|f̃(x) − f(x)| = O

(√
nǫmahine∑n

i=1
|xi|

).(Hint: google �random walk�...you an justquote standard results for random walks,no need to opy the proofs.)(e) Compare your error bounds above tonumerial experiments in Matlab. Here,we will use an old trik to ompute the�oating-point errors: ompare the resultsomputed in one preision to the �exat�results omputed in a higher preision.In partiular, we will use the Matlabsingle() funtion to aumulate the sumin single preision, rather than Matlab'sdefault double preision. Plot the error
|f̃(x)−f(x)|/ ∑

i |xi| as a funtion of n on alog-log sale (Matlab's loglog ommand),and explain your observation in terms ofyour results above.1This is implemented in the example�le loopsum.m, posted on the ourse page,whih omputes the sum f(x) =loopsum(x)via the above algorithm in single preision.For your numerial experiment, omputethe sum of n random inputs x ∈ [0, 1)nvia Matlab's rand(1,n) funtion. You anthen ompute |f̃(x) − f(x)|/ ∑

i |xi| for agiven n viax = rand(1,n);err = abs(loopsum(x) - sum(x)) /sum(abs(x));Problem 3: Addition, another wayHere you will analyze f(x) =
∑n

i=1
xi as in prob-lem 2, but this time you will ompute f̃(x) in adi�erent way. In partiular, ompute f̃(x) bya reursive divide-and-onquer approah, reur-sively dividing the set of values to be summed intwo halves and then summing the halves:

f̃(x) =

0 if n = 0

x1 if n = 1

f̃(x1:⌊n/2⌋) ⊕ f̃(x⌊n/2⌋+1:n) if n > 1

,1Use enough n values to get a lear result. e.g. theommand n = round(logspae(2,6,100)) gives 100 log-arithmially spaed n values from 10
2 to 10

6.1

where ⌊y⌋ denotes the greatest integer ≤ y (i.e.
y rounded down). In exat arithmeti, this om-putes f(x) exatly, but in �oating-point arith-meti this will have very di�erent error hara-teristis than the simple loop-based summationin problem 2.(a) For simpliity, assume n is a power of 2(so that the set of numbers to add dividesevenly in two at eah stage of the reur-sion). With an analysis similar to thatof problem 2, prove that |f̃(x) − f(x)| ≤

ǫmahine log2(n)
∑n

i=1
|xi| + O(ǫ2mahine).That is, show that the worst-ase errorbound grows logarithmially rather than lin-early with n!(b) If the �oating-point rounding errors are ran-domly distributed as in problem 2, estimatethe average-ase error bound.() Pete R. Stunt, a Mirosoft employee, om-plains, �While doing this kind of reursionmay have nie error harateristis in the-ory, it is ridiulous in the real world be-ause it will be insanely slow�I'm proudof my e�ient software and an't a�ordto have a funtion-all overhead for everynumber I want to add!� Explain to Petehow to implement a slight variation of thisalgorithm with the same logarithmi errorbounds (possibly with a worse onstant fa-tor) but roughly the same performane as asimple loop.2(d) On the ourse web page, I've posteda �le div2sum.m that omputes

f̃(x) =div2sum(x) by the above algo-rithm. Modify it to not be horrendouslyslow via your suggestion in (), and thenplot its errors for random inputs as afuntion of n as in problem 2. Are yourresults onsistent with your error estimatesabove?(e) Suppose we now multiply two m × m ran-dom matries A and B (∈ [0, 1)m×m, uni-formly distributed) to form C = AB. If youlook at any given entry cij of C, how quiklydo you expet the errors to grow with m if2In fat, there is a ommon real-world algorithm thatdoes summation in preisely this reursive way: theCooley-Tukey fast Fourier transform.

you ompute AB via the simple 3-loop row-olumn algorithm? What if you use the op-timal ahe-oblivious algorithm from lass?Problem 4: Stability(a) Trefethen, exerise 15.1.(b) Trefethen, exerise 16.1.

2

