18.335 Problem Set 1

Due Wednesday, 17 September 2008.

Problem 1: LU revisited

Trefethen, problem 20.4.

Problem 2: LU-ish updates

Suppose that we are given the LU factorization A = LU for the $m \times m$ nonsingular matrix A (again, not worrying about row swaps/pivoting or roundoff errors for now). Now, we change A to $\tilde{A} = A + xy^T$ for some $x, y \in \mathbb{R}^m$ (this is a rank-1 update of A). We would like to find the new LU factorization $\tilde{A} = \tilde{L}\tilde{U}$ as quickly as possible

It turns out that this is a little too hard, so we will relax the problem by supposing that, instead of L being lower triangular, we let $L = M_1 M_2 \cdots M_N$ be a product of matrices M_k which are each the identity matrix plus exactly one nonzero element *either* above or below the diagonal—let's call these "near-identity matrices" (a term I just made up). (In tradional LU, these are all lower triangular.) Assume N is $O(m^2)$.

So, you are given the M_k matrices and U(which is still upper triangular), and now you want to find \tilde{U} (upper triangular) and the new \tilde{M}_k near-identity matrices to define $\tilde{L} = \tilde{M}_1 \tilde{M}_2 \cdots \tilde{M}_{\tilde{N}}$ (for some new \tilde{N}). (Note that \tilde{L} need not be lower-triangular; we only require that the \tilde{M}_k matrices be near-identity as defined above.) And we want to do it in $O(m^2)$ time [rather than the $\Theta(m^3)$ time to recompute an LU factorization from scratch].

- (a) Assume N is $O(m^2)$. Explain why the storage for L (or its equivalent in terms of the M_k 's) and the time to solve La = b can be both $O(m^2)$, just like for traditional LU.
- (b) Show that à = L(U + uv^T) for some u, v ∈ ℝ^m that can be computed in O(m²) operations.
- (c) Show that your answer above is equivalent to writing $\tilde{A} = LBD$ where B is an $m \times (m+1)$ matrix and D is an $(m+1) \times m$ matrix. (Hint: B and D are made directly

out of u, U, v^T , and 1's/0's with no arithmetic required. Make u the first column of B.)

- (d) Your matrix B should be "almost" upper triangular already. Show that, in O(m) operations, you can convert it so the last m columns form an upper-triangular matrix \hat{U} and the first column has only a single nonzero entry in the ℓ -th row for some $1 \leq \ell \leq m$. That is, show how you can factorize B, in O(m) operations, as $B = \hat{L}(\alpha e_{\ell}, \hat{U})$ for matrix \hat{L} matrix that is the product of O(m) near-identity matrices \hat{M}_k , and some real number α [where e_{ℓ} denotes the column vector with a 1 in the ℓ -th row and zeros in other rows, and $(\alpha e_{\ell}, \hat{U})$ denotes the matrix whose first column is αe_{ℓ} and whose remaining columns are the columns of \hat{U}].
- (e) You now have $\tilde{A} = L\hat{L}(\alpha e_{\ell}, \hat{U})D$. Show that $(\alpha e_{\ell}, \hat{U})D$ is almost upper triangular, except for (at most) one row. Explain how you can convert this back into upper-triangular form with at most $O(m^2)$ operations.
- (f) Combining all of the above, show that you now have \tilde{L} (in terms of the \tilde{M}_k 's) and \tilde{U} in $Km^2 + O(m)$ flops (adds/subtracts + multiplies), and give the leading coefficient K. For this part and for the next part, assume that your starting L was found from ordinary LU decomposition via m - 1 elimination steps, so your initial N is N = m(m-1)/2
- (g) Using the above procedure repeatedly (not worrying about roundoff error), we can perform M rank-1 updates in $O(Mm^2)$ flops. How big does M have to be before it would be fewer operations just to re-do the LU factorization from scratch $(2m^3/3 \text{ flops})$? If you looked at actual computing time with optimized code, do you think the actual break-even point would be reached for Msmaller or larger than this, and why?

Problem 3: Caches and matrix multiplications

In class, we considered the performance and cache complexity of matrix multiplication A = BC, especially for square $m \times m$ matrices, and showed how to reduce the number of cache misses using various forms of blocking. In this problem, you will be comparing optimized matrix-matrix products to optimized matrix-vector products, using Matlab.

(a) The code matmul_bycolumn.m posted on the 18.335 web page computes A = BCby multiplying B by each column of C individually (using Matlab's highly-optimized BLAS matrix-vector product). Benchmark this: plot the flop rate for square $m \times m$ matrices as a function of m, and also benchmark Matlab's built-in matrix-matrix product and plot it too. For example, Matlab code to benchmark Matlab's $m \times m$ products for $m = 1, \ldots, 1000$, storing the flop rate $(2m^3/\text{nanoseconds})$ in an array gflops(m), is:

```
gflops = zeros(1, 1000);
for m = 1:1000
  A = rand(m,m);
 B = rand(m,m);
  t = 0;
  iters = 1;
  % run benchmark for at least 0.1 seconds
  while (t < 0.1)
    tic
    for iter = 1:iters
      C = A * B;
    end
    t = toc; % elapsed time in seconds
    iters = iters * 2;
  end
  gflops(m) = 2*m<sup>3</sup> * 1e-9 / (t * 2/iters);
end
```

- (b) Compute the cache complexity (the asymptotic number of cache misses in the idealcache model, as in class) of an m×m matrixvector product implemented the "obvious" way (a sequence of row column dot products).
- (c) Propose an algorithm for matrix-vector products that obtains a better asymptotic

cache complexity by dividing the operation into some kind of blocks.

(d) Assuming Matlab uses something like your "improved" algorithm from part (c) to do matrix-vector products, compute the cache complexity of matmul_bycolumn. Compare this to the cache complexity of the blocked matrix-matrix multiply from class. Does this help to explain your results from part (a)?