
18.335 Problem Set 1

Due Wednesday, 17 September 2008.

Problem 1: LU revisited

Trefethen, problem 20.4.

Problem 2: LU-ish updates

Suppose that we are given the LU factorization
A = LU for the m × m nonsingular matrix A
(again, not worrying about row swaps/pivoting
or roundo� errors for now). Now, we change A to
Ã = A+xyT for some x, y ∈ Rm (this is a rank-1

update of A). We would like to �nd the new LU
factorization Ã = L̃Ũ as quickly as possible

It turns out that this is a little too hard, so
we will relax the problem by supposing that,
instead of L being lower triangular, we let
L = M1M2 · · ·MN be a product of matrices
Mk which are each the identity matrix plus ex-
actly one nonzero element either above or below
the diagonal�let's call these �near-identity ma-
trices� (a term I just made up). (In tradional
LU, these are all lower triangular.) Assume N is
O(m2).
So, you are given the Mk matrices and U

(which is still upper triangular), and now you
want to �nd Ũ (upper triangular) and the
new M̃k near-identity matrices to de�ne L̃ =
M̃1M̃2 · · · M̃Ñ (for some new Ñ). (Note that

L̃ need not be lower-triangular; we only require
that the M̃k matrices be near-identity as de�ned
above.) And we want to do it in O(m2) time
[rather than the Θ(m3) time to recompute an
LU factorization from scratch].

(a) Assume N is O(m2). Explain why the stor-
age for L (or its equivalent in terms of the
Mk's) and the time to solve La = b can be
both O(m2), just like for traditional LU.

(b) Show that Ã = L(U + uvT ) for some u, v ∈
Rm that can be computed in O(m2) opera-
tions.

(c) Show that your answer above is equiva-
lent to writing Ã = LBD where B is an
m× (m+1) matrix and D is an (m+1)×m
matrix. (Hint: B and D are made directly

out of u, U , vT , and 1's/0's with no arith-
metic required. Make u the �rst column of
B.)

(d) Your matrix B should be �almost� upper tri-
angular already. Show that, in O(m) op-
erations, you can convert it so the last m
columns form an upper-triangular matrix
Û and the �rst column has only a single
nonzero entry in the `-th row for some 1 ≤
` ≤ m. That is, show how you can factorize
B, in O(m) operations, as B = L̂(αe`, Û)
for matrix L̂ matrix that is the product of
O(m) near-identity matrices M̂k, and some
real number α [where e` denotes the column
vector with a 1 in the `-th row and zeros in
other rows, and (αe`, Û) denotes the matrix
whose �rst column is αe` and whose remain-
ing columns are the columns of Û ].

(e) You now have Ã = LL̂(αe`, Û)D. Show that
(αe`, Û)D is almost upper triangular, ex-
cept for (at most) one row. Explain how you
can convert this back into upper-triangular
form with at most O(m2) operations.

(f) Combining all of the above, show that you
now have L̃ (in terms of the M̃k's) and Ũ in
Km2 + O(m) �ops (adds/subtracts + mul-
tiplies), and give the leading coe�cient K.
For this part and for the next part, assume
that your starting L was found from or-
dinary LU decomposition via m − 1 elim-
ination steps, so your initial N is N =
m(m− 1)/2

(g) Using the above procedure repeatedly (not
worrying about roundo� error), we can per-
form M rank-1 updates in O(Mm2) �ops.
How big does M have to be before it would
be fewer operations just to re-do the LU fac-
torization from scratch (2m3/3 �ops)? If
you looked at actual computing time with
optimized code, do you think the actual
break-even point would be reached for M
smaller or larger than this, and why?

1



Problem 3: Caches and matrix mul-

tiplications

In class, we considered the performance and
cache complexity of matrix multiplication A =
BC, especially for square m × m matrices, and
showed how to reduce the number of cache misses
using various forms of blocking. In this problem,
you will be comparing optimized matrix-matrix
products to optimized matrix-vector products,
using Matlab.

(a) The code matmul_bycolumn.m posted on
the 18.335 web page computes A = BC
by multiplying B by each column of C in-
dividually (using Matlab's highly-optimized
BLAS matrix-vector product). Benchmark
this: plot the �op rate for square m × m
matrices as a function of m, and also bench-
mark Matlab's built-in matrix-matrix prod-
uct and plot it too. For example, Matlab
code to benchmark Matlab's m×m products
for m = 1, . . . , 1000, storing the �op rate
(2m3/nanoseconds) in an array g�ops(m),
is:

gflops = zeros(1,1000);

for m = 1:1000

A = rand(m,m);

B = rand(m,m);

t = 0;

iters = 1;

% run benchmark for at least 0.1 seconds

while (t < 0.1)

tic

for iter = 1:iters

C = A * B;

end

t = toc; % elapsed time in seconds

iters = iters * 2;

end

gflops(m) = 2*m^3 * 1e-9 / (t * 2/iters);

end

(b) Compute the cache complexity (the asymp-
totic number of cache misses in the ideal-
cache model, as in class) of an m×m matrix-
vector product implemented the �obvious�
way (a sequence of row·column dot prod-
ucts).

(c) Propose an algorithm for matrix-vector
products that obtains a better asymptotic

cache complexity by dividing the operation
into some kind of blocks.

(d) Assuming Matlab uses something like your
�improved� algorithm from part (c) to do
matrix-vector products, compute the cache
complexity of matmul_bycolumn. Compare
this to the cache complexity of the blocked
matrix-matrix multiply from class. Does
this help to explain your results from part
(a)?

2


