
A Brief Overview
of Optimization Problems

Steven G. Johnson
MIT course 18.335, Fall 2008

Why optimization?
• In some sense, all engineering design is

optimization: choosing design parameters to
improve some objective

• Much of data analysis is also optimization:
extracting some model parameters from data while
minimizing some error measure (e.g. fitting)

• Most business decisions = optimization: varying
some decision parameters to maximize profit (e.g.
investment portfolios, supply chains, etc.)

A general optimization problem

min
x∈� n

f0 (x) minimize an objective function f0
with respect to n design parameters x
(also called decision parameters, optimization variables, etc.)

— note that maximizing g(x)
 corresponds to f0 (x) = –g(x)subject to m constraints

fi (x) ≤ 0
i = 1,2,…,m

note that an equality constraint
h(x) = 0

yields two inequality constraints
fi(x) = h(x) and fi+1(x) = –h(x)

(although, in practical algorithms, equality constraints
typically require special handling)x is a feasible point if it

satisfies all the constraints
feasible region = set of all feasible x

Important considerations

• Global versus local optimization
• Convex vs. non-convex optimization
• Unconstrained or box-constrained optimization, and

other special-case constraints
• Special classes of functions (linear, etc.)
• Differentiable vs. non-differentiable functions
• Gradient-based vs. derivative-free algorithms
• …
• Zillions of different algorithms, usually restricted to

various special cases, each with strengths/weaknesses

Global vs. Local Optimization
• For general nonlinear functions, most algorithms only

guarantee a local optimum
– that is, a feasible xo such that f0(xo) ≤ f0(x) for all feasible x

within some neighborhood ||x–xo|| < R (for some small R)
• A much harder problem is to find a global optimum: the

minimum of f0 for all feasible x
– exponentially increasing difficulty with increasing n, practically

impossible to guarantee that you have found global minimum
without knowing some special property of f0

– many available algorithms, problem-dependent efficiencies
• not just genetic algorithms or simulated annealing (which are popular,

easy to implement, and thought-provoking, but usually very slow!)
• for example, non-random systematic search algorithms (e.g. DIRECT),

partially randomized searches (e.g. CRS2), repeated local searches from
different starting points (“multistart” algorithms, e.g. MLSL), …

Convex Optimization

All the functions fi (i=0…m) are convex:
fi (αx + βy) ≤ α fi (x) + β fi (y) where

α + β = 1
α,β ∈[0,1]

f(x)

x y

αf(x) + βf(y)

f(αx+βy)

convex: f(x)

x y

not convex:

For a convex problem (convex objective & constraints)
any local optimum must be a global optimum

⇒ efficient, robust solution methods available

[good reference: Convex Optimization by Boyd and Vandenberghe,
free online at www.stanford.edu/~boyd/cvxbook]

Important Convex Problems

• LP (linear programming): the objective and
constraints are affine: fi(x) = ai

Tx + αi

• QP (quadratic programming): affine constraints +
convexquadratic objective xTAx+bTx

• SOCP (second-order cone program): LP + cone
constraints ||Ax+b||2 ≤ aTx + α

• SDP (semidefinite programming): constraints are that
ΣAkxk is positive-semidefinite

all of these have very efficient, specialized solution methods

Important special constraints
• Simplest case is the unconstrained optimization

problem: m=0
– e.g., line-search methods like steepest-descent,

nonlinear conjugate gradients, Newton methods …
• Next-simplest are box constraints (also called

bound constraints): xk
min ≤ xk ≤ xk

max

– easily incorporated into line-search methods and many
other algorithms

– many algorithms/software only handle box constraints
• …
• Linear equality constraints Ax=b

– for example, can be explicitly eliminated from the
problem by writing x=Ny+ξ, where ξ is a solution to
Aξ=b and N is a basis for the nullspace of A

Derivatives of fi
• Most-efficient algorithms typically require user to

supply the gradients ∇xfi of objective/constraints
– you should always compute these analytically

• rather than use finite-difference approximations, better to just
use a derivative-free optimization algorithm

• in principle, one can always compute ∇xfi with about the same
cost as fi, using adjoint methods

– gradient-based methods can find (local) optima of
problems with millions of design parameters

• Derivative-free methods: only require fi values
– easier to use, can work with complicated “black-box”

functions where computing gradients is inconvenient
– may be only possibility for nondifferentiable problems
– need > n function evaluations, bad for large n

Removable non-differentiability
consider the non-differentiable unconstrained problem:

min
x∈� n

f0 (x) f0(x)
–f0(x)

x

min
x∈� n

max f0 (x),− f0 (x){ }()
equivalent to minimax problem:

…still nondifferentiable…

…equivalent to constrained problem with a “temporary” variable t:

min

x∈� n , t∈�
t t ≥ f0 (x)

t ≥ − f0 (x)
f1(x) = f0 (x) − t()

f2 (x) = − f0 (x) − t()
subject to:

diffe
ren

tiab
le!

optimum

Example: Chebyshev linear fitting

a

b

N points
(ai,bi)

fit line
ax1+x2find the fit that minimizes

the maximum error:

min
x1 ,x2

max
i

x1ai + x2 − bi()
… nondifferentiable minimax problem

equivalent to a linear programming problem (LP):

min
x1 ,x2 , t

t subject to 2N constraints:

x1ai + x2 − bi − t ≤ 0
bi − x1ai − x2 − t ≤ 0

Relaxations of Integer Programming
If x is integer-valued rather than real-valued (e.g. x ∈ {0,1}n),
the resulting integer programming or combinatorial optimization
problem becomes much harder in general.

However, useful results can often be obtained by a continuous
relaxation of the problem — e.g., going from x ∈ {0,1}n to x ∈ [0,1]n

… at the very least, this gives an lower bound on the optimum f0

Example: Topology Optimization
design a structure to do something, made of material A or B…

let every pixel of discretized structure vary continuously from A to B

ex: design a cantilever
to support maximum weight
with a fixed amount of material

density of each pixel
varies continuously from 0 (air) to max force

optimized structure,
deformed under load

[Buhl et al, Struct. Multidisc. Optim. 19, 93–104 (2000)]

Some Sources of Software

• Decision tree for optimization software:
http://plato.asu.edu/guide.html

 — lists many packages for many problems

• CVX: general convex-optimization package
http://www.stanford.edu/~boyd/cvx

• NLopt: implements many nonlinear optimization algorithms
 (global/local, constrained/unconstrained, derivative/no-derivative)

http://ab-initio.mit.edu/nlopt

