
18.335 Fall 2008

Performance Experiments

with Matrix Multiplication

Steven G. Johnson

Hardware: 2.66GHz Intel Core 2 Duo

64-bit mode, double precision, gcc 4.1.2

optimized BLAS dgemm: ATLAS 3.6.0
http://math-atlas.sourceforge.net/

A trivial problem?

C = A B
m!p m!n n!p

for i = 1 to m

 for j = 1 to p

!

Cij = AikBkj

k=1

n

"

the “obvious” C code:

/* C = A B, where A is m x n, B is n x p,

 and C is m x p, in row-major order */

void matmul(const double *A, const double *B,

 double *C, int m, int n, int p)

{

 int i, j, k;

 for (i = 0; i < m; ++i)

 for (j = 0; j < p; ++j) {

 double sum = 0;

 for (k = 0; k < n; ++k)

 sum += A[i*n + k] * B[k*p + j];

 C[i*p + j] = sum;

 }

}

2mnp flops
(adds+mults)

just three loops, how complicated can it get?

flops/time is not constant!
(square matrices, m=n=p)

L1 cache

exceeded?

L2 cache

exceeded?

L1 cache

exceeded

for single row?

(2.66GHz processor?

 why < 1 gigaflops?)

Not all “noise” is random

All flops are not created equal

same #operations

same abstract algorithm

factor of 10 in speed

nearly peak

theoretical flop rate
(2 flops/cycle via SSE2 instructions)

Things to remember

• We cannot understand performance without

!!!!!!understanding memory efficiency (caches).

– ~10 times more important than arithmetic count

• Computers are more complicated than you think.

• Even a trivial algorithm is nontrivial to implement well.

– matrix multiplication: 10 lines of code " 130,000+ (ATLAS)

