18.335 Fall 2008 Performance Experiments with Matrix Multiplication

Steven G. Johnson

Hardware: 2.66GHz Intel Core 2 Duo 64-bit mode, double precision, gcc 4.1.2

optimized BLAS dgemm: ATLAS 3.6.0 http://math-atlas.sourceforge.net/

the "obvious" C code:

}

int i, j, k; for (i = 0; i < m; ++i) for (j = 0; j < p; ++j) { double sum = 0; for (k = 0; k < n; ++k) sum += A[i*n + k] * B[k*p + j]; C[i*p + j] = sum;

2mnp flops (adds+mults)

just three loops, how complicated can it get?

flops/time is not constant!

(square matrices, *m*=*n*=*p*)

Not all "noise" is random

All flops are not created equal

Things to remember

- We cannot understand performance without understanding memory efficiency (caches).
 ~10 times more important than arithmetic count
- Computers are more complicated than you think.
- Even a trivial algorithm is nontrivial to implement *well*.
 matrix multiplication: 10 lines of code → 130,000+ (ATLAS)