cache hit: CPU needs item in cache (fast)

cache miss: CPU needs item not in cache
 — item loaded into cache for future use, replacing some other item

optimal replacement: on cache miss, loaded item replaces item that will not be needed for the *longest time in the future*

[more realistic scheme: **LRU replacement** — replace least recently used item
 — provably within small constant factor of optimal, but much harder to analyze]

fully associative — any item in memory can go anywhere in the cache
 [real caches have limited associativity, which causes “unlucky” memory-access patterns to go same place in cache
 …effectively shrinks cache in these cases]

temporal locality — same item is re-used for several computations that are close to one another in time ⇒ still in-cache ⇒ efficient

[there is also **spatial locality** — items close to one another in main memory are used close in time … exploited by **cache lines**, TBD]

cache complexity — the number of cache misses \(Q(n; Z) \) required for a given algorithm running on a problem of size \(n \) with cache of size \(Z \)
 … usually only given as **asymptotic** result for large \(n, Z \), ignoring constant factors

asymptotic notation:
 we say a function \(f(n) \) is \(O(g(n)) \) if \(g(n) \) is an **asymptotic upper bound** for \(f(n) \), ignoring constant factors. Technically, if \(f(n) < C \cdot g(n) \) for some constant \(C \) for all sufficiently large \(n \) (i.e., for all \(n > N \) for some \(N \))

 we say a function \(f(n) \) is \(\Omega(g(n)) \) if \(g(n) \) is an **asymptotic lower bound** for \(f(n) \), ignoring constant factors. Technically, if \(f(n) > C \cdot g(n) \) for some constant \(C \) for all sufficiently large \(n \) (i.e., for all \(n > N \) for some \(N \))

 we say a function \(f(n) \) is \(\Theta(g(n)) \) if \(g(n) \) is an **asymptotic tight bound** for \(f(n) \), ignoring constant factors. Technically, if \(f(n) \) is both \(O(g(n)) \) and \(\Omega(g(n)) \)