
18.325 Problem Set 6

Due Thursday, 17 November 2005.

Problem 1: Brillouin zones and

band diagrams

In class, we derived the irreducible Brillouin zone
for a lattice of cylindrical dielectric rods in air
with lattice constant a: either a square lattice,
where the lattice vectors di�er by 90◦, or a tri-
angular lattice, where the lattice vectors di�er
by 60◦ (in class we used 120◦, but you can get
60◦ just by �ipping the sign of one of the lattice
vectors).

(a) If you look in the MPB tutorial
(http://ab-initio.mit.edu/mpb/doc/user-
tutorial.html), it shows you how to compute
the TM band diagrams in these two cases.
Repeat these calculations, but use rods
with radius r = 0.2a and ε = 8.9 rather
than the ε = 12 in the tutorial, and �nd
the size of the �rst TM gap for both the
square and triangular lattices. (See also
the sq-rods.ctl and tri-rods.ctl �les in the
/mit/mpb/examples directory.)

(b) Now, consider an intermediate case: a
lattice of the same circular rods in air
where the primitive lattice vectors both
have length a but the angle between them is
75◦. Figure out what is the Brillouin zone in
this case, and the irreducible Brillouin zone,
and then run MPB to compute the size of
the �rst TM gap.

Be careful about units (see the note on units
in the MPB tutorial): in MPB, the k points
are speci�ed in the basis of the reciprocal lat-
tice vectors. If you work out the Brillouin zone
in Cartesian coordinates, you can convert to the
reciprocal basis by dividing by 2π and calling the
(cartesian->reciprocal (vector3 x y z)) function
in MPB as described in the reference section of
the manual.

Problem 2: Line-defect modes

For this problem, you should make use of the �le
/mit/mpb/examples/line-defect.ctl in the MPB
locker on Athena, which computes the bands of

a line defect formed by a missing row of rods in
a triangular lattice of rods.

(a) Change ε to 8.9 to match problem 1. Com-
pute and plot the TM projected band dia-
gram of this mode. By increasing the super-
cell size (which folds more and more bands
in the continuum regions but leaves the de-
fect mode unchanged), identify the contin-
uum regions on your plot (the projection of
the bands of the perfect crystal).

(b) Sketch the Brillouin zone of the triangular
lattice of rods, and show how it is projected
for the line defect. Careful: for the line de-
fect, we have to project this onto the Γ−K
direction (the nearest-neighbor direction),
but the edge of the new 1d Brillouin zone is
not K. Where is the edge of the projected
1d Brillouin zone?

(c) Consider the TM bands for the triangu-
lar lattice that you computed in problem
1. Project each one of these bands onto
the irreducible Brillouin zone for the line-
defect waveguide, and superimpose its pro-
jected plot onto your the projected band di-
agram you computed in (a). For each band
of the original band diagram, you should
have more than one projected band, corre-
sponding to all rotations/re�ections of the
original band (e.g. there are six equivalent
rotations of the Γ − K direction, although
some of these project onto the −k axis and
can be omitted.)

Problem 3: Galerkin methods

Consider the 1d Schrodinger equation for an
eigenvalue (energy) E:(

− d2

dx2
+ V (x)

)
ψ(x) = Eψ(x),

with boundary conditions ψ(0) = ψ(L) = 0,
for some smooth potential V (x). Now suppose
we want to express this problem on a computer
via a discrete grid of N − 1 points with spacing
∆ = L/N , using a basis of �tent� functions t(x)
centered at each grid point:

ψ(x) ≈ ψN (x) =
N−1∑
n=1

pnt(x− n∆)
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with some unknown coe�cients pn, where

t(x) =
{

1− |x|/∆ |x| < ∆
0 otherwise

.

Thus, ψN (n∆) = pn (i.e. the pn are the values at
the grid points) and ψN is linearly interpolated
in between grid points. Note that the boundary
conditions are automatically satis�ed.

(a) Using the Galerkin approach, express the
Schrodinger equation above as an (N −1)×
(N − 1) matrix eigenvalue problem Ap =
EBp in terms of Hermitian matrices A and
B.

(b) Show that the d2/dx2 operator just turned
into a discrete-grid (�nite-di�erence) ver-
sion of the 2nd derivative. (Hint: in evalu-
ating this integral in the Galerkin approach,
it is probably easier if you integrate by parts
to avoid taking the derivative of a discontin-
uous function.)

(c) For V (x) = 0, recall that we solved this
equation in class in the �rst week: the so-
lutions are ψ(x) = sin(mπx/L), with eigen-
values Ek = (mπ/L)2 for m = 1, 2, 3, · · ·.
Compute your matrices A and B in this
case for L = 1, V (x) = 0, and N = 10,
and plug them into Matlab to get the cor-
responding 9 eigenvalues (with the eig(A,B)
command), and give the fractional error in
each eigenvalue compared to the analytical
result. Which is most accurate, and why?

Problem 4: Meep!

For this problem, you will use the Meep �nite-
di�erence time-domain code, which is installed
on the Athena Linux/Intel machines in the mpb
locker (add mpb); see also the Meep manual at
http://ab-initio.mit.edu/meep. As your starting
point, you should use the rod-transmission.ctl
example �le, which is posted on the course web
page, which computes the transmission spec-
trum of TM planewave source in the x direction
through nx layers of the square-lattice rod crys-
tal from problem 1.

(a) Compute the transmission spectrum as a
function of nx, for nx=1, 2, 3, 4, 5, 6, and

plot them (on a single plot). The trans-
mission spectrum should be normalized by
dividing by the transmission for nx=0 (no
holes). Relate the features of this transmis-
sion spectrum to the band diagram of prob-
lem 1.

(b) Compute the TE transmission spectrum for
nx=10 layers, and relate it to the TE band
diagram (which you can compute yourself
with MPB, or you can look up from the
band diagram in the handout). Careful: you
need to change three places in the control
�le. (What happens to the symmetry?)

(c) Try making the pulse frequency spectrum
very broad, e.g. df=2 (computing the �ux
in a correspondingly wide frequency range),
and plotting the TM transmission spectrum;
in the original range from (a), does the new
transmission spectrum match what you had
before?

(d) Predict analytically at what frequency ω0

you should start to see additional di�racted
orders in the re�ected wave (i.e. re�ected
waves at angles in addition to the normal
0◦ re�ection). Now, modify the simulation
to use a TM continuous-wave (CW) source
and output Ez at the end, as in the Meep tu-
torial, and show that there is a qualitative
change in the re�ected �eld pattern if you
put in a frequency just below ω0 versus a fre-
quency just above ω0. If you look just below
ω0, then you will have to increase the �pad�
parameter in order to see an undisturbed
0◦ re�ection pattern far from the crystal�
why?
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