
18.325 Problem Set 4

Due Thursday, 27 October 2005.

Problem 1: Group velocity

and material dispersion

Suppose that we have a dispersive medium
with some frequency-dependent dielectric con-
stant ε(ω). (We still assume ε(ω) > 0 and
real, however.1) In this case, our eigen-equation
becomes a �self-consistent� equation Θ̂ |H〉 =
ω2

c2 |H〉, since the eigen-operator Θ̂ depends on
the eigenvalue ω.

(a) Explain why ω is still real, and why �rst-
order perturbation theory (and thus the
Hellman-Feynman theorem) still holds for
such a self-consistent Hermitian eigen-like
problem. Give a property of Hermitian
eigen problems that is not true any longer
for the self-consistent problem.

(b) Apply the Hellman-Feynman theorem to the
self-consistent problem Θ̂k |Hk〉 = ω2

c2 |Hk〉
in order to get an expression for the group
velocity vg = dω

dk . Note that you will have to
use the chain rule, because varying k causes
Θ̂k to change directly and it also causes ε

to change due to the change in ω: dΘ̂k

dk =
∂Θ̂k

∂k + ∂Θ̂
∂ε · dε

dω · vg.

(c) Show that your vg is the ratio of mean �ux
to mean energy density, where the energy
density is now the �dispersive� energy den-
sity 1

8π (d(ωε)
dω |E|2 + |H|2), as derived e.g. in

Jackson (Classical Electrodynamics).

Problem 2: Dispersion

Derive the width of a narrow-bandwidth Gaus-
sian pulse propagating in 1d (x) in a dispersive
medium, as a function of time, in terms of the
dispersion parameter D = 2πc

v2
gλ2

dvg

dω = − 2πc
λ2

d2k
dω

as de�ned in class. That is, assume that we have

1Strictly speaking, any dispersive ε must be complex
to satisfy causality (see e.g. Jackson, Classical Electro-
dynamics, or Google �Kramers-Kronig relations�), but for
weak dispersion we can neglect the absorption loss (imag-
inary part) to a �rst approximation.

a pulse whose �elds can be written in terms of a
Fourier transform of a Gaussian distribution:

�elds ∼ 1√
2π

∫ ∞

−∞
e−(k−k0)

2/2σ2
ei(kx−ωt),

with some width σ and central wavevector k0 �
σ. Expand ω to second-order in k around k0

and compute the inverse Fourier transform to
get the spatial distribution of the �elds, and
de�ne the �width� of the pulse in space as the
standard deviation of the |�elds|2. That is,

width =
√∫

(x− x0)2|�elds|2dx/
∫
|�elds|2dx,

where x0 is the center of the pulse (i.e. x0 =∫
x|�elds|2dx/

∫
|�elds|2dx).

Problem 3: Projected band dia-

grams and omni-directional re�ec-

tion

Starting with the bandgap1d.ctl MPB control
�le from problem set 3, which computes the fre-
quencies as a function of kx. Modify it to com-
pute the frequencies as a function of ky for some
range of ky (e.g. 0 to 2, in units of 2π/a ... recall
that the ky Brillouin zone is in�nite!) for some
�xed value of kx, and to use ε2 = 2.25 instead of
1.2

(a) Compute and plot the TM projected band
diagram for the quarter-wave stack with ε of
12 and 2.25. That is, plot ω(ky) for several
bands, �rst with kx = 0, then kx = 0.1,
then 0.2, then ... then 0.5, and interpolate
intermediate kx to shade in the �continuum�
regions of the projected bands. Verify that
the extrema of these continua lie at either
kx = 0 or kx = 0.5 (in units of 2π/a), i.e. at
the B.Z. edges.

(b) Compute and plot the TE projected band
diagram as well.

(c) Find the size ∆ω/ωmid of the range of
omni-directional re�ection (from an inter-
face with air). Vary the layer thicknesses
d1 or d2 slightly and see how the size of
the omni-directional gap changes...do the
quarter-wave thicknesses lead to the max-
imum omni-directional gap?

2You might want to add a �kx� parameter via �(de�ne-
param kx 0)� so that you can change kx from the com-
mand line with �mpb kx=0.3 ...�.
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Problem 4: Fabry-Perot Waveg-

uides

Modify the MPB defect1d.ctl �le from problem
set 3 to compute the defect mode as a function
of ky (for kx = 0).

(a) Changing a single ε2 layer by ∆ε = 4, with
an N = 20 supercell, plot the �rst 80 bands
as a function of ky for some reasonable range
of ky. Overlay your TM projected band di-
agram from problem 3, above, to show that
the bands fall into two categories: modes
that fall within the projected �continuum�
regions from problem 3, and discrete guided
bands that lie within the empty spaces. (If
there are any bands just outside the edge of
the continuum region, increase the supercell
size to check whether those bands are an ar-
tifact of the �nite size.) Plot the �elds for
the guided bands (a couple of nonzero ky

points will do) to show that they are indeed
localized.

(b) Modify the structure and plot the new band
diagram(s) (if necessary) to give examples
of:

(i) �index-guided� bands that do not lie
within a band gap

(ii) a band in the gap that intersects a con-
tinuum region

(iii) a band in the gap that asymptotically
approaches, but does not intersect, the
continuum regions
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