
18.325 Problem Set 2
Due Tuesday, 4 October 2005.

Problem 1: Variational Theorem
Suppose that we have a (possibly in�nite dimen-
sional) Hermitian operator Ô operating on some
Hilbert space {|ψ〉}, and consider the Rayleigh
quotient 〈ψ|Ô|ψ〉 / 〈ψ|ψ〉. Show that the mini-
mum of this quotient (or, indeed, any extremum)
occurs if and only if |ψ〉 is an eigenstate of Ô. Do
this by the using property that, at an extremum
|ψ〉, the quotient must be stationary : that is, if
we add any small |δψ〉 to |ψ〉 at an extremum,
the change in the Rayleigh quotient is zero to
�rst order in |δψ〉. You should be able to show
that this stationary condition implies that |ψ〉
satis�es the eigen-equation.

Problem 2: 2d Waveguide Modes
Consider the two-dimensional dielectric waveg-
uide of thickness h that we �rst introduced in
class:

ε(y) =
{

εhi |y| < h/2
εlo |y| ≥ h/2 ,

where εhi > εlo. Look for solutions with the
�TM� polarization E = Ez(x, y)ẑe−iωt. The
boundary conditions are that Ez is continuous
and ∂Ez/∂y (∼ Hx) is continuous, and that we
require the �elds to be �nite at x, y → ±∞,

(a) Prove that we can set εlo = 1 without loss
of generality, by a change of variables in
Maxwell's equations. In the subsequent sec-
tions, therefore, set εlo = 1for simplicity.

(b) Find the guided-mode solutions Ez(x, y) =
eikxEk(y), where the corresponding eigen-
value ω(k) < ck is below the light line.

(i) Show for the |y| < h/2 region the so-
lutions are of sine or cosine form, and
that for |y| > h/2 they are decaying
exponentials.

(ii) Match boundary conditions at y =
±h/2 to obtain an equation relating
ω and k. You should get a transcen-
dental equation that you cannot solve
explicitly. However, you can �solve� it
graphically and learn a lot about the

solutions�in particular, you might try
plotting the left and right hand sides of
your equation (suitably arranged) as a
function of k⊥ =

√
ω
c2

2εhi − k2, so that
you have two curves and the solutions
are the intersections.

(iii) From the graphical picture, derive an
exact expression for the number of
guided modes as a function of k. Show
that there is exactly one guided mode,
with even symmetry, as k → 0, as we
argued in class.

(iv) If you look at the Hz polarization, how
do your equations change? (Hint: the
boundary conditions from Maxwell's
equations are that H is continuous, the
components E‖ parallel to a dielectric
interface is continuous, and the compo-
nents D⊥ = εE⊥ perpendicular to a di-
electric interface are continuous.) How
is the number of guided modes a�ected
at each k? How about the strength of
the con�nement (i.e. the exponential
decay rate)?

Problem 3: Conservation Laws
(a) Suppose that introduce a nonzero current

J(x)e−iωt into Maxwell's equations at a
given frequency ω, and we want to �nd
the resulting time-harmonic electric �eld
E(x)e−iωt (i.e. we are only looking for �elds
that arise from the current, with E → 0
as |x| → ∞ if J is localized). Show that
this results in a linear equation of the form
Â |E〉 = |b〉, where Â is some linear opera-
tor and |b〉 is some known right-hand side in
terms of the current density J.

(i) Prove that, if J transforms as some ir-
reducible representation of the space
group then |E〉 (= E, which you can
assume is a unique solution) does also.
(This is the analogue of the conserva-
tion in time that we showed in class,
except that now we are proving it in
the frequency domain. You could prove
it by Fourier-transforming the theorem
from class, but do not do so�instead,
prove it directly from the linear equa-
tion here.)
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(ii) Formally, |E〉 = Â−1 |b〉, where Â−1 is
related to the Green's function of the
system. What happens if ω is one of
the eigenfrequencies?

(b) Let Ût be our time-evolution operator, and
we have some space group G of symmetry
operators Ôg (g ∈ G) such that [Ût, Ôg] = 0.
Now, suppose that we have some state |ψ(t)〉
that at one time transforms as purely one
representation and at a later time trans-
forms as some other representation (or some
superposition of representation), violating
the conservation theorem we proved in class.
Show that this implies that Ût is a nonlinear
operator (i.e. it depends on the amplitude of
the state). (In class, we implicitly assumed
that our operators were linear.)1

Problem 4: Cylindrical symmetry
Suppose that we have a cylindrical metallic
waveguide�that is, a perfect metallic tube with
radius R, which is uniform in the z direction.
The interior of the tube is simply air (ε = 1).

(a) This structure has continuous rotational
symmetry around the z axis, called the C∞
group.2 Find the irreducible representations
of this group (there are in�nitely many be-
cause it is an in�nite group).

(b) For simplicity, consider the (Hermitian)
scalar wave equation −∇2ψ = ω2

c2 ψ with
ψ|r=R = 0. Show that, when we look
for solutions ψ that transform like one of
the representations of the C∞ group from
above, and have z dependence eikz (from
the translational symmetry), then we ob-
tain a Bessel equation (Google it if you've
forgotten Mr. Bessel). Write the solu-
tions in terms of Bessel functions, assum-
ing that you are given their zeros xm,n (i.e.
Jm(xm,n) = 0 for n = 1, 2, . . ., where Jm is
the Bessel function of the �rst kind...if you
Google for �Bessel function zeros� you can

1A famous example of this in optics is third-harmonic
generation. If we have a nonlinear ε ∼ |E|2,we can start
with a planewave at (ω,k) and generate another wave at
(3ω, 3k).

2It also has an in�nite set of mirror planes containing
the z axis, but let's ignore these for now. If they are
included, the group is called C∞v.

�nd them tabulated). Sketch the dispersion
relation ω(k) for a few bands.

(c) From the general orthogonality of Hermitian
eigenfunctions, derive an orthogonality inte-
gral for the Bessel functions.

Problem 5: Numerical computa-
tions with MPB
For this problem, you will gain some initial expe-
rience with the MPB numerical eigensolver de-
scribed in class, and which is available on Athena
in the mpb locker. Refer to the class hand-
outs, and also to the online MPB documenta-
tion at jdj.mit.edu/mpb/doc. For this problem,
you will study the simple 2d dielectric waveg-
uide (with εhi = 12) that you analyzed analyti-
cally above, along with some variations thereof�
start with the sample MPB input �le (2dwaveg-
uide.ctl) that was introduced in class and is avail-
able on the course web page.

(a) Plot the TM (Ez) even modes as a function
of k, from k = 0 to a large enough k that
you get at least four modes. Compare where
these modes start being guided (go below
the light line) to your analytical prediction
from problem 1. Show what happens to this
�crossover point� when you change the size
of the computational cell.

(b) Plot the �elds of some guided modes on a
log scale, and verify that they are indeed ex-
ponentially decaying away from the waveg-
uide. (What happens at the computational
cell boundary?)

(c) Modify the structure so that the waveguide
has ε = 2.25 instead of air on the y < −h/2
side. Show that there is a low-ω cuto� for
both TM and TE guided bands, as we ar-
gued in class, and �nd the cuto� frequency.

(d) Create the waveguide with the following
pro�le:

ε(y) =





2 0 ≤ y < h/2
0.8 − h/2 < y < 0

1 |y| ≥ h/2
.

Should this waveguide have a guided mode
as k → 0? Show numerical evidence to sup-
port your conclusion (careful: as the mode
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becomes less localized you will need to in-
crease the computational cell size).

3


