
18.325 Problem Set 1
Due Tuesday, 13 September 2005.

Problem 1: Adjoints and operators
(a) We de�ned the adjoint † of states and opera-

tors by: 〈H1|H2〉 = |H1〉† |H2〉 and 〈H1|Ô|H2〉 =
(Ô† |H1〉)† |H2〉. Show that for a �nite-
dimensional Hilbert space, where |H〉 is a col-
umn vector hn (n = 1, · · · , d), Ô is a square
d × d matrix, and 〈H(1)|H(2)〉 is the ordinary
conjugated dot product

∑
n h

(1)∗
n h

(2)
n , the above

adjoint de�nition corresponds to the conjugate-
transpose for both matrices and vectors.

(b) Show that if Ô is simply a number o, then
Ô† = o∗. (This is not the same as the previ-
ous question, since Ô here can act on in�nite-
dimensional (continuous) spaces.)

(c) If a linear operator Ô satis�es Ô† = Ô−1, then
the operator is called unitary. Show that a uni-
tary operator preserves inner products (that is,
if we apply Ô to every element of a Hilbert space,
then their inner products with one another are
unchanged). Show that the eigenvalues u of a
unitary operator have unit magnitude (|u| = 1)
and that its eigenvectors can be chosen to be
orthogonal to one another.

(d) For a non-singular operator Ô (i.e. Ô−1 exists),
show that (Ô−1)† = (Ô†)−1. (Thus, if Ô is Her-
mitian then Ô−1 is also Hermitian.)

Problem 2: Completeness
(a) Prove that the eigenvectors |n〉 of a �nite-

dimensional Hermitian operator Ô (a d × d
matrix) are complete: that is, that any d-
dimensional vector can be expanded as a sum∑

n cn |n〉 in the eigenvectors with some coe�-
cients cn. It is su�cient to show that there are
d linearly independent eigenvectors |n〉:

(i) Show that every d × d Hermitian matrix
O has at least one nonzero eigenvector |1〉

(... use the fact that every polynomial with
nonzero degree has at least one (possibly
complex) root).

(ii) Show that the space of V1 = {|v〉 | 〈v|1〉 =
0} orthogonal to |1〉 is preserved (trans-
formed into itself or a subset of itself) by
Ô. From this, show that we can form a
(d − 1) × (d − 1) Hermitian matrix whose
eigenvectors (if any) give (via a similar-
ity transformation) the remaining (if any)
eigenvectors of O.

(iii) By induction, form an orthonormal basis of
d eigenvectors for the d-dimensional space.

(b) Suppose that we have an in�nite-dimensional
Hermitian operator Ô that can be simulated on
a computer (with arbitrary, but �nite, memory
and time): its solutions can be approximated to
arbitrary accuracy by a �nite-dimensional Her-
mitian operator (e.g. Ô discretized on a �nite
grid). Argue that the in�nite-dimensional eigen-
vectors form a complete basis for anything that
we care about; can you give an example of a sense
in which they do not form a complete basis?1

(c) Completeness is not automatic for eigenvectors
in general. Give an example of a non-singular
non-Hermitian operator whose eigenvectors are
not complete. (A 2× 2 matrix is �ne. This case
is also called �defective.�)

Problem 3: Maxwell eigenproblems
(a) In class, we eliminated E from Maxwell's equa-

tions to get an eigenproblem in H alone, of the
form Θ̂ |H〉 = ω2

c2 |H〉. Show that if you in-
stead eliminate H, you cannot get a Hermitian
eigenproblem in E except for the trivial case
ε = constant. Instead, show that you get a
generalized Hermitian eigenproblem of the form
Â |E〉 = ω2

c2 B̂ |E〉, where both Â and B̂ are Her-
mitian operators.

1For a more precise discussion of the completeness of conti-
nous Hermitian operators, see e.g. Courant & Hilbert,Methods
of Mathematical Physics vol. 1.
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(b) For any generalized Hermitian eigenproblem
where B̂ is positive de�nite (i.e. 〈E|B̂|E〉 > 0
for all |E〉 6= 02), show that the eigenvalues are
real and that di�erent eigenvectors |E1〉 and |E2〉
satisfy a modi�ed kind of orthogonality. Show
that B̂ for the E eigenproblem above was indeed
positive de�nite.

(c) Show that both the |E〉 and |H〉 formulations
lead to generalized Hermitian eigenproblems
with real ω if we allow magnetic materials
µ(x) 6= 1 (but require µ real, positive, and in-
dependent of H or ω).

(d) µ and ε are only ordinary numbers for isotropic
media. More generally, they are 3 × 3 matri-
ces (technically, rank 2 tensors)�thus, in an
anisotropic medium, by putting an applied �eld
in one direction, you can get dipole moment in
di�erent direction in the material. Show what
conditions these matrices must satisfy for us to
still obtain a generalized Hermitian eigenprob-
lem in E (or H) with real eigen-frequency ω.

Problem 4: Projection operators
The representation-theory handout gives a formula
for the projection operator from a state onto its com-
ponent that transforms as a particular representa-
tion. Prove the correctness of this formula (using the
Great Orthogonality Theorem).

Problem 5: Symmetries of a �eld in a
metal box
In class, we considered a two-dimensional (xy) prob-
lem of light in an L × L square of air (ε = 1)
surrounded by perfectly conducting walls (in which
E = 0). We solved the case of H = Hz(x, y)ẑ and
saw solutions corresponding to three di�erent repre-
sentations of the symmetry group (C4v).

2Here, when we say |E〉 6= 0 we mean it in the sense of
generalized functions; loosely, we ignore isolated points where
E is nonzero, as long as such points have zero integral, since
such isolated values are not physically observable. See e.g.
Gelfand and Shilov, Generalized Functions.

(a) Solve for the eigenmodes of the other polariza-
tion: E = Ez(x, y)ẑ (you will need the E eigen-
problem from above), with the boundary condi-
tion that Ez = 0 at the metal walls.

(i) Sketch and classify the solutions according
to the representations of C4v enumerated
in class.

(b) Consider the solutions in a triangular box with
side L. Don't try to solve this analytically; in-
stead, use symmetry to sketch out what the pos-
sible solutions will look like for both Ez and Hz

polarizations.

(i) List the symmetry operations in the space
group (choose the origin at the center of
the triangle so that the space group is sym-
morphic), and break them into conjugacy
classes. (This group is traditionally called
C3v). Verify that the group is closed un-
der composition (i.e. that the composition
of two operations always gives another op-
eration in the group) by giving the �mul-
tiplication table� of the group (whose rows
and columns are group members and whose
entries give their composition).

(ii) Find the character table of C3v, using the
rules from the representation-theory hand-
out.

(iii) Give unitary representation matrices D for
each irreducible representation of C3v.

(iv) Sketch possible ω 6= 0 Ez and Hz solu-
tions that would transform as these rep-
resentations. What representation should
the lowest-ω mode (excluding ω = 0) of
each polarization correspond to? If there
are any (non-accidental) degenerate modes,
show how given one of the modes we can get
the other orthogonal eigenfunction(s) (e.g.
in the square case we could get one from
the 90◦ rotation of the other for a degener-
ate pair).
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