Microcavity Blues

For cavities (point defects) frequency-domain has its drawbacks:

- Best methods compute lowest-ω bands, but N^d supercells have N^d modes below the cavity mode — expensive
- Best methods are for Hermitian operators, but losses requires non-Hermitian

Time-Domain Eigensolvers

(finite-difference time-domain = FDTD)

Simulate Maxwell's equations on a discrete grid, + absorbing boundaries (leakage loss)

• Excite with broad-spectrum dipole (*) source

Signal Processing is Tricky

a common approach: least-squares fit of spectrum

Fits and Uncertainty

problem: have to run long enough to completely decay

There is a better way, which gets complex ω to > 10 digits

Unreliability of Fitting Process

Resolving two overlapping peaks is near-impossible 6-parameter nonlinear fit (too many local minima to converge reliably)

There is a better way, which gets complex ω for both peaks to > 10 digits

Quantum-inspired signal processing (NMR spectroscopy):

Filter-Diagonalization Method (FDM)

[Mandelshtam, J. Chem. Phys. 107, 6756 (1997)]

Given time series
$$y_n$$
, write: $y_n = y(n\Delta t) = \sum_k a_k e^{-i\omega_k n\Delta t}$

...find complex amplitudes a_k & frequencies ω_k by a simple linear-algebra problem!

Idea: pretend y(t) is autocorrelation of a quantum system:

$$\hat{H}|\psi\rangle = i\hbar \frac{\partial}{\partial t}|\psi\rangle$$
 time- Δt evolution-operator: $\hat{U} = e^{-i\hat{H}\Delta t/\hbar}$ say: $y_n = \langle \psi(0)|\psi(n\Delta t)\rangle = \langle \psi(0)|\hat{U}^n|\psi(0)\rangle$

Filter-Diagonalization Method (FDM) [Mandelshtam, J. Chem. Phys. 107, 6756 (1997)]

$$y_n = \langle \psi(0) | \psi(n\Delta t) \rangle = \langle \psi(0) | \hat{U}^n | \psi(0) \rangle$$
 $\hat{U} = e^{-i\hat{H}\Delta t/\hbar}$

We want to diagonalize U: eigenvalues of U are $e^{i\omega\Delta t}$...expand U in basis of $|\psi(n\Delta t)\rangle$:

$$U_{m,n} = \langle \psi(m\Delta t) | \hat{U} | \psi(n\Delta t) \rangle = \langle \psi(0) | \hat{U}^m \hat{U} \hat{U}^n | \psi(0) \rangle = y_{m+n+1}$$

 U_{mn} given by y_n 's — just diagonalize known matrix!

Filter-Diagonalization Summary [Mandelshtam, J. Chem. Phys. 107, 6756 (1997)]

 U_{mn} given by y_n 's — just diagonalize known matrix!

A few omitted steps:

- —Generalized eigenvalue problem (basis not orthogonal)
- —Filter y, 's (Fourier transform): small bandwidth = smaller matrix (less singular)

- resolves many peaks at once
- # peaks not known a priori
- resolve overlapping peaks
- resolution >> Fourier uncertainty