0 Review

Suppose we have some vector space V of functions $u(x)$ on a domain Ω, an inner product $\langle u, v \rangle$, and a linear operator \hat{A}. [More specifically, V forms a Sobolev space, in that we require $\langle u, Au \rangle$ to be finite.] \hat{A} is self-adjoint if $\langle u, \hat{A}v \rangle = \langle \hat{A}u, v \rangle$ for all $u, v \in V$, in which case its eigenvalues λ_n are real and its eigenfunctions $u_n(x)$ can be chosen orthonormal. \hat{A} is positive definite (or semidefinite) if $\langle u, \hat{A}u \rangle > 0$ (or ≥ 0) for all $u \neq 0$, in which case its eigenvalues are > 0 (or ≥ 0); suppose that we order them as $0 < \lambda_1 \leq \lambda_2 \leq \cdots$.

Suppose that \hat{A} is positive definite, so that $N(\hat{A}) = \{0\}$ and $\hat{A}u = f$ has a unique solution for all f in some suitable space of functions $C(\hat{A})$. Then, for scalar-valued functions u and f, we can typically write

$$u(x) = \hat{A}^{-1}f = \int_{x' \in \Omega} G(x, x') f(x') \, \text{d}x'$$

in terms of a Green’s function $G(x, x')$, where $\int_{x' \in \Omega}$ denotes integration over x'. In this note, we don’t address how to find G, but instead ask what properties it must have from the self-adjointness and definiteness of \hat{A}. [This generalizes in a straightforward way to vector-valued $u(x)$ and $f(x)$, in which case $G(x, x')$ is matrix-valued.]

1 Self-adjointness of \hat{A}^{-1} and reciprocity of G

We can show that $(\hat{A}^{-1})^* = (\hat{A}^*)^{-1}$, from which it follows that if $\hat{A} = \hat{A}^*$ (\hat{A} is self-adjoint) then \hat{A}^{-1} is also self-adjoint. In particular, consider $\hat{A}^{-1}\hat{A} = 1$: $\langle u, v \rangle = \langle u, \hat{A}^{-1}\hat{A}v \rangle = \langle \hat{A}^{-1}u, \hat{A}v \rangle = \langle \hat{A}^*(\hat{A}^{-1})^*u, v \rangle$, hence $\hat{A}^*(\hat{A}^{-1})^* = 1$ and $(\hat{A}^{-1})^* = (\hat{A}^*)^{-1}$. And of course, we already knew that the eigenvalues of \hat{A}^{-1} are λ_n^{-1} and the eigenfunctions are $u_n(x)$.

What are the consequences of self-adjointness for G? Suppose the u are scalar functions, and that the inner product is of the form $\langle u, v \rangle = \int_{\Omega} w \bar{u}v$ for some weight $w(x) > 0$. From the fact that $\langle u, \hat{A}^{-1}v \rangle = \langle \hat{A}^{-1}u, v \rangle$, substituting equation (1), we must therefore have:

$$\langle u, \hat{A}^{-1}v \rangle = \int_{x, x' \in \Omega} w(x) \bar{u(x)} G(x, x') v(x')$$

$$= \langle \hat{A}^{-1}u, v \rangle$$

$$= \int_{x, x' \in \Omega} w(x) \bar{G(x, x')} u(x') v(x') = \int_{x, x' \in \Omega} w(x') \bar{u(x)} G(x', x) v(x'),$$

where in the last step we have interchanged/relabeled $x \leftrightarrow x'$. Since this must be true for all u and v, it follows that

$$w(x) G(x, x') = w(x') G(x', x)$$

for all x, x'. This property of G (or its analogues in other systems) is sometimes called reciprocity. In the common case where $w = 1$ and \hat{A} and G are real (so that the complex conjugation can be omitted), it says that the effect at x from a source at x' is the same as the effect at x' from a source at x.

18.303: Self-adjointness (reciprocity) and definiteness (positivity) in Green’s functions

S. G. Johnson

October 11, 2011
There are many interesting consequences of reciprocity. For example, its analogue in linear electrical circuits says that the current at one place created by a voltage at another is the same as if the locations of the current and voltage are swapped. Or, for antennas, the analogous theorem says that a given antenna works equally well as a transmitter or a receiver.

1.1 Example: $\hat{A} = -\frac{d^2}{dx^2}$ on $\Omega = [0, L]$

For this simple example (where \hat{A} is self-adjoint under $\langle u, v \rangle = \int \bar{u}v$), with Dirichlet boundaries, we previously obtained a Green’s function,

$$G(x, x') = \begin{cases}
(1 - \frac{x}{L}) x < x' \\
(1 - \frac{x'}{L}) x \geq x' \end{cases}$$

which obviously obeys the $G(x, x') = G(x', x)$ reciprocity relation.

2 Positive-definiteness of \hat{A}^{-1} and positivity of G

Not only is \hat{A}^{-1} self-adjoint, but since its eigenvalues are the inverses λ_n^{-1} of the eigenvalues of \hat{A}, then if \hat{A} is positive-definite ($\lambda_n > 0$) then \hat{A}^{-1} is also positive-definite ($\lambda_n^{-1} > 0$). From another perspective, if $\hat{A}u = f$, then positive-definiteness of \hat{A} means that $0 < \langle u, \hat{A}u \rangle = \langle u, f \rangle = (\hat{A}^{-1}f, f) = (f, \hat{A}^{-1}f)$ for $u \neq 0 \iff f \neq 0$, hence \hat{A}^{-1} is positive-definite. (And if \hat{A} is a PDE operator with an ascending sequence of unbounded eigenvalues, then the eigenvalues of \hat{A}^{-1} are a descending sequence $\lambda_1^{-1} > \lambda_2^{-1} > \cdots > 0$ that approaches 0 asymptotically from above.)

If \hat{A} is a real operator (real u give real $\hat{A}u$), then \hat{A}^{-1} should also be a real operator (real f give real $u = \hat{A}^{-1}f$). Furthermore, under fairly general conditions for real positive-definite (elliptic) PDE operators \hat{A}, especially for second-derivative (“order 2”) operators, then one can often show $G(x, x') > 0$ (except of course for x or x' at the boundaries, where G vanishes for Dirichlet conditions). The analogous fact for matrices \hat{A} is that if \hat{A} is real-symmetric positive-definite and it has off-diagonal entries ≤ 0 — like our $-\nabla^2$ second-derivative matrices (recall the $-1, 2, -1$ sequences in the rows) and related finite-difference matrices — it is called a Stieltjes matrix, and such matrices can be shown to have inverses with nonnegative entries.

2.1 Example: $\hat{A} = -\nabla^2$ with $u|_{\partial\Omega} = 0$

Physically, the positive-definite problem $-\nabla^2 u = f$ can be thought of as the displacement u in response to an applied pressure f, where the Dirichlet boundary conditions correspond to a material pinned at the edges. The Green’s function $G(x, x')$ is the limit of the displacement u in response to a force concentrated at a single point x'. The Green’s function $G(x, x')$ for some example points x' is shown for a 1d domain $\Omega = [0, 1]$ in figure 1(left) (a “stretched string”), and for a 2d domain $\Omega = [-1, 1] \times [-1, 1]$ in figure 1(right) (a “square drum”). As expected, $G > 0$ everywhere except at the edges where it is zero: the whole string/membrane moves in the positive/upwards direction in response to a positive/upwards force.

1 Such \hat{A}^{-1} integral operators are typically what are called “compact” operators. Functional analysis books often prove diagonalizability (a “spectral theorem”) for compact operators first and only later consider diagonalizability of PDE-like operators by viewing them as the inverses of compact operators.

3 There are many books with “nonnegative matrices” in their titles that cover this fact, usually as a special case of a more general class of something called “M matrices,” but I haven’t yet found an elementary presentation at an 18.06 level. Note that the diagonal entries of a positive-definite matrix P are always positive, thanks to the fact that $P_{ii} = e_i^T Pe_i > 0$ where e_i is the unit vector in the i-th coordinate.
Figure 1: Examples illustrating the positivity of the Green’s function $G(x, x')$ for a positive-definite operator $(-\nabla^2$ with Dirichlet boundaries). Left: a “stretched string” 1d domain $[0, 1]$. Right: a “stretched square drum” 2d domain $[-1, 1] \times [-1, 1]$.