18.303 Problem Set 4 Solutions

Problem 1: (5+10+10 points)
In class, we defined the Kronecker product $A \otimes B$ of two matrices as the matrix

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \cdots \\ a_{21}B & a_{22}B & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix},$$

where a_{ij} is the (i, j) entry of A. Derive the following properties of Kronecker products from this definition:

(a) We have

$$(A \otimes B)^* = \begin{pmatrix} \overline{a_{11}}B^* & \overline{a_{12}}B^* & \cdots \\ \overline{a_{12}}B^* & \overline{a_{22}}B^* & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

by swapping rows and columns of $A \otimes B$ and conjugating. By inspection, this is the same as $A^* \otimes B^*$, since the entries of A^* are

$$A^* = \begin{pmatrix} \overline{a_{11}} & \overline{a_{12}} & \cdots \\ \overline{a_{12}} & \overline{a_{22}} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}.$$

(b) We have

$$(A \otimes B)(C \otimes D) = \begin{pmatrix} a_{11}B & a_{12}B & \cdots \\ a_{21}B & a_{22}B & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} c_{11}D & c_{12}D & \cdots \\ c_{21}D & c_{22}D & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}.$$

As shown in class, when we multiply the two “block” matrices like this, we can use the ordinary “row times column” matrix-multiplication formula where we multiply blocks and add them up, i.e. the product is

$$\begin{pmatrix} \sum_{k=1}^{n} a_{1k}Bc_{k1}D & \sum_{k=1}^{n} a_{1k}Bc_{k2}D & \cdots \\ \sum_{k=1}^{n} a_{2k}Bc_{k1}D & \sum_{k=1}^{n} a_{2k}Bc_{k2}D & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix},$$

where n is the number of columns of A (and rows of C). That is, the (i, j)-th block is

$$\sum_{k=1}^{n} a_{ik}Bc_{kj}D = \left(\sum_{k=1}^{n} a_{ik}c_{kj}\right)BD = (AC)_{ij}BD$$

where we have noticed that $\sum_{k=1}^{n} a_{ik}c_{kj}$ is simply the formula for the i, j element of AC. But this means

$$(A \otimes B)(C \otimes D) = \begin{pmatrix} (AC)_{11}BD & (AC)_{12}BD & \cdots \\ (AC)_{21}BD & (AC)_{22}BD & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} = (AC) \otimes (BD).$$

Q.E.D.
(c) Consider the vector \(y_n \otimes x_m \). Applying linearity and the mixed-product formula from the previous part, we have
\[
(I_N \otimes A + B \otimes I_M)(y_n \otimes x_m) = (I_Ny_n) \otimes (Ax_m) + (By_n) \otimes (I_Mx_m) \\
= y_n \otimes (\lambda_m x_m) + (\mu_n y_n) \otimes x_m \\
= (\lambda_m + \mu_n)y_n \otimes x_m,
\]

hence this is a “separable” eigenvector of \(I_N \otimes A + B \otimes I_M \) with eigenvalue \(\lambda_m + \mu_n \). There are \(MN \) of these \(y_n \otimes x_m \) eigenvectors, and \(I_N \otimes A + B \otimes I_M \) is \(MN \times MN \), so that is all of the eigenvectors and eigenvalues.

As discussed in class, an \(MN \)-row column vector \(y_n \otimes x_m \) can be thought of as a “two-dimensional \(M \times N \) array” that has been written in column-major order, and the matrix \(I_N \otimes A + B \otimes I_M \) can be thought of as a “two-dimensional” operator that acts with \(A \) in the \(M \) direction and \(B \) in the \(N \) direction. If we reverse this “one-dimensionalization” process, \(y_n \otimes x_m \) corresponds to the “two-dimensional array” \(x_m y_n^T \), which varies like \(x_m \) in the \(M \) direction and like \(y_n \) in the \(N \) direction. This is exactly the analogue of a 2d separable PDE solution \(X(x)Y(y) \) that is a product of one-dimensional functions \(X(x) \) and \(Y(y) \) along each direction.

Problem 2: (5+10+5+5+(5+5+5)+5 points)

Often, separability of the solutions is a consequence of symmetry. In this problem, you will show a related property for the case of discrete translational symmetry: a PDE that is invariant under rotation by \(2\pi/N \). In particular, suppose that we have the circular system of \(N \) springs and masses, with identical spring constants \(k \), depicted in Figure 1. Suppose that the equation of motion of the \(n \)-th mass is
\[
m\ddot{\phi}_n = \kappa(\phi_{n+1} - \phi_n) - \kappa(\phi_n - \phi_{n-1}).
\]

(a) Since \(\ddot{\phi}_n = \frac{\kappa}{m}(\phi_{n+1} - 2\phi_n + \phi_{n-1}) \), we can write
\[
A = \frac{\kappa}{m} \begin{pmatrix}
-2 & 1 & & & 1 \\
1 & -2 & 1 & & \\
& 1 & -2 & 1 & \\
& & \ddots & \ddots & \ddots \\
& & & 1 & -2 & 1 \\
& & & & 1 & -2
\end{pmatrix}.
\]

Note the first and last rows! This is a consequence of the periodicity of the system, since we can identify \(\phi_0 = \phi_N \) and \(\phi_{N+1} = \phi_1 \).

(b) To check definiteness, the easiest way is to factorize \(A \). Similar to class, we write \(\ddot{\phi}_n \) in two steps: first we compute \(\psi_{n+0.5} = \phi_{n+1} - \phi_n \), then we compute \(\dot{\phi}_n = \frac{\kappa}{m}(\psi_{n+0.5} - \psi_{n-0.5}) \). Unlike the 1d case in class, however, there are only \(N \) values \(\psi_{n+0.5} \), equal to the number of springs! Hence, we obtain an \(N \times N \) matrix \(D \) given by:
\[
\begin{pmatrix}
\psi_{1.5} \\
\psi_{2.5} \\
\vdots \\
\psi_{N-0.5} \\
\psi_{N+0.5}
\end{pmatrix} = Dx =
\begin{pmatrix}
-1 & 1 & & & 1 \\
1 & -1 & 1 & & \\
& 1 & -1 & 1 & \\
& & \ddots & \ddots & \ddots \\
& & & 1 & -1 & 1 \\
& & & & 1 & -1
\end{pmatrix}
\begin{pmatrix}
\phi_1 \\
\phi_2 \\
\vdots \\
\phi_{N-1} \\
\phi_N
\end{pmatrix},
\]
where we must be careful to get the periodicity right for the last row \(\psi_{N+0.5} = \phi_1 - \phi_N \).

Similarly, noting that \(\dot{\phi}_1 = \frac{\kappa}{m} (\psi_{1.5} - \psi_{N+0.5}) \), we have:

\[
\ddot{x} = \frac{\kappa}{m} \begin{pmatrix}
1 & 0 & \cdots & 0 & -1 \\
-1 & 1 & \cdots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 1 & -1 & 0 \\
0 & \cdots & 0 & 1 & -1
\end{pmatrix}
\begin{pmatrix}
\psi_{1.5} \\
\psi_{2.5} \\
\vdots \\
\psi_{N-0.5} \\
\psi_{N+0.5}
\end{pmatrix} = -\frac{\kappa}{m} D^T D x,
\]

where we have identified that the matrix to take the differences of the \(\psi_{n+0.5} \) is precisely \(-D^T\). Hence, \(A = -\frac{\kappa}{m} D^T D \), which by inspection is at least \textbf{negative semidefinite} (from class).

It is not negative-definite, however. This can be checked in a variety of ways, most easily by noticing that

\[
D \begin{pmatrix}
1 \\
1 \\
\vdots \\
1 \\
1
\end{pmatrix} = 0,
\]

and hence \(D \) is not full-rank (and similarly for \(A \)).

(c) Multiplying \(RA \) acts \(R \) on each of the columns of \(A \), i.e. it permutes each column, giving:

\[
RA = \frac{\kappa}{m} \begin{pmatrix}
1 & -2 & 1 \\
1 & -2 & 1 \\
\vdots & \ddots & \ddots \\
1 & -2 & 1 \\
1 & -2 & 1
\end{pmatrix}.
\]

Multiplying \(AR = (R^T A^T)^T = (R^T A)^T \) is equivalent to permuting each row of \(A \) by \(R^T \) (i.e. in the opposite direction), hence

\[
R^T A = \frac{\kappa}{m} \begin{pmatrix}
1 & -2 & 1 \\
1 & -2 & 1 \\
\vdots & \ddots & \ddots \\
1 & -2 & 1 \\
1 & -2 & 1
\end{pmatrix},
\]

which = \(RA \). Q.E.D.

(d) Consider the vector \(y = Rx \). Using \(RA = AR \), we obtain: \(Ay = ARx = RAx = \lambda Rx = \lambda y \). Therefore, \(y \) is an eigenvector of \(A \) with eigenvalue \(\lambda \). But we were told that \(\lambda \) has multiplicity 1: this means that \(y \) must be linearly dependent on \(x \), i.e. \(y = \alpha x \) for some scalar \(\alpha \). Hence \(y = Rx = \alpha x \), and \(x \) is an eigenvector of \(R \) with eigenvalue \(\alpha \). Q.E.D
(e) (i) We just write out $Rx = e^{ikx}$:

$$
R \begin{pmatrix}
1 \\
x_2 \\
\vdots \\
x_{N-1} \\
x_N
\end{pmatrix} =
\begin{pmatrix}
x_2 \\
x_3 \\
\vdots \\
x_N
\end{pmatrix} = e^{ikx}
\begin{pmatrix}
1 \\
x_2 \\
\vdots \\
x_{N-1} \\
x_N
\end{pmatrix}
$$

and hence $x_2 = e^{ik}$, $x_3 = e^{ik}x_2 = e^{2ik}$, and so on, or

$$
\begin{pmatrix}
x_2 \\
x_3 \\
\vdots \\
x_N
\end{pmatrix} = e^{ikx} = e^{i(N-2)k}
$$

or more simply:

$$
x_n = e^{i(n-1)k}
$$

(ii) On an eigenvector, $R^N x = e^{iNk} x = x$, and hence $e^{iNk} = 1$. This means that Nk is an integer multiple of 2π, i.e. $Nk = 2\pi m$ for $m = 0, 1, 2, \ldots$, giving eigenvalues

$$
\alpha_m = e^{i2\pi m/N}
$$

A little more carefully, we notice that $\alpha_N = \alpha_0$, so we have N distinct eigenvalues $\frac{m = 0, 1, \ldots, N - 1}{m = 0, 1, \ldots, N - 1}$

(iii) Now that we know the eigenvectors x_n, we can plug it back into $Ax = \lambda x$. Each row of this equation has the form

$$
\frac{\kappa}{m} (x_{n+1} - 2x_n + x_{n-1}) = \lambda x_n
$$

and plugging in the form of $x_n = e^{i(k(n-1))} = e^{ik}e^{-ik}$ and dividing both sides by x_n gives:

$$
\frac{\kappa}{m} (e^{ik} - 2 + e^{-ik}) = \lambda = \frac{\kappa}{m} [2\cos(k) - 2].
$$

Hence, plugging in the equation for k from above, we have:

$$
\lambda_m = \frac{2\kappa}{m} [\cos(2\pi m/N) - 1] = -\frac{4\kappa}{m} \sin^2 \left(\frac{\pi m}{N} \right)
$$

for $m = 0, 1, \ldots, N - 1$, where we have used the half-angle identity $1 - \cos(k) = 2\sin^2(k/2)$ to simplify the final expression. Note that the eigenvalues are real and ≤ 0 as expected, with exactly one zero eigenvalue $\lambda_0 = 0$.

(f) The angular difference between each mass is $\Delta \theta = \frac{2\pi}{N}$, and hence $x_n = e^{i\Delta \theta m(n-1)} = e^{im\theta}$ where we define the angle $\theta = (n-1)\Delta \theta$. Hence the eigenfunctions in the continuum limit are simply

$$
\phi(\theta) = e^{im\theta}
$$

for integers m (or any constant multiple thereof, of course).
Problem 3: (5+5+10 points)

(a) Given the above identity, integration by parts is straightsforwards:

\[
\langle \bar{u}, \nabla \times v \rangle = \int_{\Omega} (\bar{u} \cdot (\nabla \times v)) = \int_{\Omega} [\nabla \cdot (\bar{u} \times v) + \nabla \times \bar{u} \cdot v]
\]

\[
= \iint_{\partial \Omega} (\bar{u} \times v) \cdot dS + \langle \nabla \times u, v \rangle,
\]

applying the divergence theorem in the second line. So, the surface term \(\iint_{\partial \Omega} w \cdot dS\) is for \(w = \bar{u} \times v\).

(b) If \(u \times n = 0\) on \(\partial \Omega\), then \(u\) is parallel to \(n\) and hence \(\bar{u} \times v\) is perpendicular to \(n\) and \(dS\). Hence the boundary term the integration by parts above vanishes, and \(\langle u, \nabla \times v \rangle = \langle \nabla \times u, v \rangle\), so \(\nabla \times\) is Hermitian.

(c) Taking the curl of both sides of Faraday’s Law, we have

\[
\nabla \times \nabla \times E = -\nabla \times \frac{\partial B}{\partial t} = -\frac{\partial (\nabla \times B)}{\partial t} = -\frac{1}{c^2} \frac{\partial^2 E}{\partial t^2}.
\]

Under the same inner product as above, we can just “integrate by parts” twice:

\[
\langle u, \nabla \times \nabla \times v \rangle = \int_{\Omega} (\bar{u} \cdot (\nabla \times \nabla \times v)) = \iint_{\partial \Omega} [\bar{u} \times (\nabla \times \nabla \times v)] \cdot dS + \int_{\Omega} (\nabla \times \bar{u}) \cdot (\nabla \times v)
\]

\[
= \iint_{\partial \Omega} (\nabla \times \bar{u}) \cdot dS + \int_{\Omega} (\nabla \times \nabla \times \bar{u}) \cdot v = \langle \nabla \times \nabla \times u, v \rangle,
\]

where the boundary terms cancel as before under the boundary condition \(u \times n|_{\partial \Omega} = 0\). Hence \(\nabla \times \nabla \times\) will have real eigenvalues \(\lambda\). Furthermore, we can easily show that \(\nabla \times \nabla \times\) is positive semidefinite, since from above

\[
\langle u, \nabla \times \nabla \times u \rangle = \int_{\Omega} |\nabla \times u|^2 \geq 0,
\]

and hence \(\lambda \geq 0\) for some real “eigenfrequencies” \(\omega\). Equivalently, we have

\[
\hat{A}E = \frac{\partial^2 E}{\partial t^2}
\]

where \(\hat{A} = -c^2 \nabla \times \nabla \times\) is Hermitian and negative semidefinite. From class, this is a hyperbolic equation with oscillating solutions (whose frequencies \(\omega\) come from the eigenvalues \(-\omega^2\) of \(\hat{A}\))tals have high conductivity, and such containers are called microwave resonant cavities.)
Figure 1: Circular systems of N identical masses m and springs κ. ϕ_n is the angular displacement of the n-th mass ($\phi_m = 0$ for all springs when they are at rest). Imagine that the springs can move in the ϕ direction, but cannot move in the radial direction (for example, if they are sliding without friction on the surface of a cylinder of radius R).