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The most basic way to approximate a derivative on
a computer is by a difference. In fact, you probably
learned the definition of a derivative as being the
limit of a difference:

u′(x) = lim
∆x→0

u(x + ∆x)− u(x)

∆x
.

To get an approximation, all we have to do is to
remove the limit, instead using a small but non-
infinitesimal ∆x. In fact, there are at least three
obvious variations (these are not the only possibili-
ties) of such a difference formula:

u′(x) ≈ u(x + ∆x)− u(x)

∆x
forward difference

≈ u(x)− u(x−∆x)

∆x
backward difference

≈ u(x + ∆x)− u(x−∆x)

2∆x
center difference,

with all three of course being equivalent in the ∆x→
0 limit (assuming a continuous derivative). Viewed
as a numerical method, the key questions are:

• How big is the error from a nonzero ∆x?

• How fast does the error vanish as ∆x→ 0?

• How do the answers depend on the difference ap-
proximation, and how can we analyze and design
these approximations?

Let’s try these for a simple example: u(x) = sin(x),
taking the derivative at x = 1 for a variety of ∆x val-
ues using each of the three difference formulas above.
The exact derivative, of course, is u′(1) = cos(1), so
we will compute the error |approximation − cos(1)|
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Figure 1: Error in forward- (blue circles), backward-
(red stars), and center-difference (green squares) ap-
proximations for the derivative u′(1) of u(x) = sin(x).
Also plotted are the predicted errors (dashed and
solid black lines) from a Taylor-series analysis. Note
that, for small ∆x, the center-difference accuracy
ceases to decline because rounding errors dominate
(15–16 significant digits for standard double preci-
sion).
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versus ∆x. This can be done in Julia with the fol-
lowing commands (which include analytical error es-
timates described below):

x = 1
dx = logspace(-8,-1,50)
f = (sin(x+dx) - sin(x)) ./ dx
b = (sin(x) - sin(x-dx)) ./ dx
c = (sin(x+dx) - sin(x-dx)) ./ (2*dx)
using PyPlot
loglog(dx, abs(cos(x) - f), "o",

markerfacecolor="none",
markeredgecolor="b")

loglog(dx, abs(cos(x) - b), "r*")
loglog(dx, abs(cos(x) - c), "gs")
loglog(dx, sin(x) * dx/2, "k--")
loglog(dx, cos(x) * dx.^2/6, "k-")
legend(["forward", "backward", "center",

L"$\frac{1}{2}\sin(1) \Delta x$",
L"$\frac{1}{6}\cos(1) \Delta x^2$"],
"lower right")

xlabel(L"$\Delta x$")
ylabel("|error| in derivative")

The resulting plot is shown in Figure 1. The obvi-
ous conclusion is that the forward- and backward-
difference approximations are about the same, but
that center differences are dramatically more accu-
rate—not only is the absolute value of the error
smaller for the center differences, but the rate at
which it goes to zero with ∆x is also qualitatively
faster. Since this is a log–log plot, a straight line cor-
responds to a power law, and the forward/backward-
difference errors shrink proportional to ∼ ∆x, while
the center-difference errors shrink proportional to
∼ ∆x2! For very small ∆x, the error appears to go
crazy—what you are seeing here is simply the effect
of roundoff errors, which take over at this point be-
cause the computer rounds every operation to about
15–16 decimal digits.

We can understand this completely by analyzing
the differences via Taylor expansions of u(x). Recall
that, for small ∆x, we have

u(x+∆x) ≈ u(x)+∆xu′(x)+
∆x2

2
u′′(x)+

∆x3

3!
u′′′(x)+· · · .

u(x−∆x) ≈ u(x)−∆xu′(x)+
∆x2

2
u′′(x)−∆x3

3!
u′′′(x)+· · · .

If we plug this into the difference formulas, after some
algebra we find:

forward difference ≈ u′(x)+
∆x

2
u′′(x)+

∆x2

3!
u′′′(x)+· · · ,

backward difference ≈ u′(x)−∆x

2
u′′(x)+

∆x2

3!
u′′′(x)+· · · ,

center difference ≈ u′(x) +
∆x2

3!
u′′′(x) + · · · .

For the forward and backward differences, the error
in the difference approximation is dominated by the
u′′(x) term in the Taylor series, which leads to an
error that (for small ∆x) scales linearly with ∆x.
For the center -difference formula, however, the u′′(x)
term cancelled in u(x + ∆x)− u(x−∆x), leaving us
with an error dominated by the u′′′(x) term, which
scales as ∆x2.

In fact, we can even quantitatively predict the er-
ror magnitude: it should be about sin(1)∆x/2 for
the forward and backward differences, and about
cos(1)∆x2/6 for the center differences. Precisely
these predictions are shown as dotted and solid lines,
respectively, in Figure 1, and match the computed er-
rors almost exactly, until rounding errors take over.

Of course, these are not the only possible difference
approximations. If the center difference is devised so
as to exactly cancel the u′′(x) term, why not also add
in additional terms to cancel the u′′′(x) term? Pre-
cisely this strategy can be pursued to obtain higher-
order difference approximations, at the cost of mak-
ing the differences more expensive to compute [more
u(x) terms]. Besides computational expense, there
are several other considerations that can limit one in
practice. Most notably, practical PDE problems of-
ten contain discontinuities (e.g. think of heat flow or
waves with two or more materials), and in the face
of these discontinuities the Taylor-series approxima-
tion is no longer correct, breaking the prediction of
high-order accuracy in finite differences.
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