1. Verify that divergence, curl, and gradient are linear operators.

Solution. For divergence, we want to show that for all vector fields \(\mathbf{F} \) and \(\mathbf{G} \) and scalars \(\alpha \) and \(\beta \), we have

\[
\nabla \cdot (\alpha \mathbf{F} + \beta \mathbf{G}) = \alpha \nabla \cdot \mathbf{F} + \beta \nabla \cdot \mathbf{G}.
\]

The left-hand side is

\[
\frac{\partial}{\partial x} (\alpha F_1 + \beta G_1) + \frac{\partial}{\partial y} (\alpha F_2 + \beta G_2) + \frac{\partial}{\partial z} (\alpha F_3 + \beta G_3) = \alpha \frac{\partial F_1}{\partial x} + \beta \frac{\partial G_1}{\partial x} + \alpha \frac{\partial F_2}{\partial y} + \beta \frac{\partial G_2}{\partial y} + \alpha \frac{\partial F_3}{\partial z} + \beta \frac{\partial G_3}{\partial z},
\]

which equals the right-hand side. Calculations for gradient and curl are similar.

2. Let \(\mathbf{F}(x, y, z) = (3x^2 + \frac{1}{2}y^2 + e^z, xy + z, f(x, y, z)) \). Find all \(f \) such that \(\mathbf{F} \) is curl-free.

Solution. The third component of \(\nabla \times \mathbf{F} \) is \(y - (1/2)(2y) = 0 \), as desired. For the first component to be zero, we must have \(f_y = 1 \), and for the second component to be zero we must have \(f_x = e^z \). Integrating these two equations tells us that \(f(x, y, z) = y + C_1(x, z) \) and \(f(x, y, z) = xe^z + C_2(y, z) \) for functions \(C_1 \) and \(C_2 \) which do not depend on \(y \) or \(x \) respectively. Putting these two together, we see that \(f(x, y, z) = xe^z + y + C(z) \) for any differentiable function \(C \).

3. Confirm that for a vector field \(\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3 \), we have

\[
\nabla \times (\nabla \times \mathbf{F}) = \nabla(\nabla \cdot \mathbf{F}) - \nabla^2 \mathbf{F},
\]

where \(\nabla^2 \mathbf{F} \) is defined to mean “take the Laplacian of each component of \(\mathbf{F} \).” Is it possible to derive this identity from \(\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c} \)?

Solution. [Omitted]

4. Let \(\mathbf{F} \) be a \(C^2 \) vector field on \(\mathbb{R}^3 \). Show that \(\nabla \times \mathbf{F} \) is incompressible.

Solution. We calculate

\[
\nabla \cdot (\nabla \times \mathbf{F}) = \frac{\partial^2 F_3}{\partial x \partial y} - \frac{\partial^2 F_2}{\partial x \partial z} + \frac{\partial^2 F_1}{\partial y \partial z} - \frac{\partial^2 F_3}{\partial y \partial x} + \frac{\partial^2 F_2}{\partial z \partial x} - \frac{\partial^2 F_1}{\partial z \partial y} = 0,
\]

since the mixed partials don’t depend on the order of differentiation, as \(\mathbf{F} \) is \(C^2 \).