1. Consider the function \(f(x) = \sqrt{1 - x^2} \) over the interval \([0, 1]\). Write down a definite integral whose value is equal to the arclength of the graph of \(f \).

Solution. We calculate an arclength of

\[
\int_0^1 \sqrt{1 + f'(x)^2} \, dx = \int_0^1 \sqrt{1 + \left(\frac{-2x}{2\sqrt{1-x^2}} \right)^2} \, dx = \int_0^1 \frac{1}{\sqrt{1-x^2}} \, dx.
\]

Remark: Since this arclength is \(\pi/2 \) by the definition of \(\pi \), this exercise proves that \(\int_0^1 \frac{1}{\sqrt{1-x^2}} \, dx = \pi/2 \). Moreover, it can be generalized to give a way of calculating the indefinite integral of \(1/\sqrt{1-x^2} \).

2. Consider the function \(F : \mathbb{R}^4 \to \mathbb{R}^2 \) defined by \(F(w, x, y, z) = (2/w^2 - y, 3x + \cos z) \).

(a) Find \(DF \).

Solution. The total derivative is the matrix of partial derivatives:

\[
\begin{pmatrix}
-2/w^3 & 0 & -1 & 0 \\
0 & 3 & 0 & -\sin z
\end{pmatrix}
\]

(b) Show that there exists an open set \(U \subset \mathbb{R}^2 \) containing \((1, 2)\) and a function \(f : U \to \mathbb{R}^2 \) such that for all \(x \in U \), the equations \(F(w, x, y, z) = F(1, 2, 3, \pi/2) \) have a unique solution \((y, z) = f(w, x)\). Show that \(f \) is \(C^1 \).

Solution. The implicit function theorem ensures that we can solve (abstractly) for \((y, z)\) in terms of \(x \) and \(w \) if the matrix of partial derivatives corresponding to the \(y \) and \(z \) columns has nonvanishing determinant. In this case, that means

\[
\det \begin{pmatrix}
-1 & 0 \\
0 & -\sin z
\end{pmatrix} = \det \begin{pmatrix}
-1 & 0 \\
0 & -1
\end{pmatrix} = 1 \neq 0,
\]

so the implicit function theorem does apply. It ensures the existence of such an \(f \) and the fact that \(f \) is \(C^1 \).