1. Suppose that \(A = \begin{pmatrix} 4 & 0 \\ 0 & 3 \end{pmatrix} \) and \(B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \). We regard \(A \) and \(B \) as maps from \(\mathbb{R}^2 \) to \(\mathbb{R}^2 \) by matrix multiplication (on the left, so \(A \) evaluated at \((1,2)\) is \((4,6)\), for example), and we denote by \(C \) the unit circle centered at the origin.

(a) Describe the image of \(C \) under the map \(AB \).

Solution. The matrix \(B \) rotates the plane 90 degrees counterclockwise. Therefore, the image of \(C \) under \(B \) is the unit circle rotated 90 degrees, which is equal to \(C \). The matrix \(A \) stretches the plane by a factor of 4 in the \(x \) direction and a factor of 3 in the \(y \) direction. Therefore, the image of \(C \) under \(AB \) is an ellipse centered at the origin with major axis of length 8 in the \(x \) direction and minor axis of length 6 in the \(y \) direction.

(b) Describe the image of \(C \) under the map \(BA \).

Solution. If we apply \(A \) first, then we get the ellipse described in the previous question. Rotating the ellipse 90 degrees counterclockwise gives the ellipse with major axis of length 8 in the \(y \) direction and minor axis of length 6 in the \(x \) direction.