1. Find a vector in \mathbb{R}^2 which is orthogonal to $(3, -4)$

Solution. One vector which has a zero dot product with $(3, -4)$ is $(4, 3)$.

2. Find the point on the line $4x + 3y = 7$ which is closest to the origin.

Solution. The vector from the origin to the nearest point on the given line is orthogonal to the line, and is therefore parallel to $(4, 3)$. The intersection point between $4x + 3y = 7$ and $y = \frac{3}{4}x$ is $(\frac{28}{25}, \frac{21}{25})$.