Overview: 1. Relationships between classes
 (e.g. P, NP, PSPACE...)
2. TQBF ∈ PSPACE
3. LADDER, DFA ∈ NPSPACE
4. LADDER, DFA ∈ PSPACE

> Savitch's Theorem
PSPACE = NSPACE
Relationships between P, NP, $coNP$, $PSPACE$, $coPSPACE$

$NPSPACE$

$EXPSPACE \neq P$

$EXP \neq \text{TIME}$

$NPSPACE = PSPACE = coPSPACE$

$TQBF = \text{LADDER DFA}$

$coNP$

SAT

TAUTOLOGY

NP

SAT, 3-SAT

HAMPATH

P

PATH

MOD-EXP

$P = NP$?
$P = PSPACE$?
If $P \neq NP$, $NP = PSPACE$? and so on

- $PSPACE = coPSPACE$
 - $PSPACE$ is deterministic.
 - So everything in $coPSPACE$ is decidable in polynomial space deterministically.

- $NPSPACE = PSPACE$
 - Not obvious, Switch's Theorem.
TQBF

Def: quantified Boolean formula (QBF) is a Boolean formula w/ quantifiers (\(\exists, \forall \)). All variables in the formula must be quantified.

QBF is true or false.

Def: TQBF = \(\exists \phi \) / \(\phi \) is QBF that is True.

Ex: \(\exists x [x] \) is this true/false?
True. Set \(x = \text{true} \).

\(\forall x [x] \) is this true/false?
False. Set \(x = \text{false} \) \(\rightarrow \) false result.

\(\exists x_1 \forall x_2 \exists x_3 \forall x_4 \ldots \)
\(\phi = \forall x \exists y [(x \lor y) \land (\neg x \land y)] \)
\(\phi \in \text{TQBF} \)
\(x = \text{true}, \) pick \(y = \text{false} \) \(\rightarrow \) T
\(x = \text{false}, \) pick \(y = \text{true} \) \(\rightarrow \) T
Theorem: TQBF \in PSPACE.

Idea: Use recursion

- Suppose $\phi = \exists x \cdot \psi$
 - Just try setting $x = \text{True}$ in ψ and $x = \text{False}$ in ψ. If either evaluates to true, then ϕ is true, so accept.
 - Otherwise reject.

- Suppose $\phi = \forall x \cdot \psi$
 - Try setting $x = \text{True}$, $x = \text{False}$.
 - If both evaluate to true, accept.
 - Otherwise reject.

Recurse on ψ.

- We set x to a boolean value.
- ψ is just another QBF, but now it has x set.
- So we can pass in ψ (with x set) back into our formula.
If ϕ has no quantifiers (so it has no variables), then it's just a boolean value, so output that value.

Space complexity analysis:

When we do the recursion, we want to use the same space (so don't copy the formula to new space), $\text{input } | = n$.

$\exists x_1, \exists x_2, \forall x_3 \ldots x_1 \lor x_2 \lor \overline{x_3} \ldots$

Assignments:

<table>
<thead>
<tr>
<th>T</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T v F</td>
</tr>
</tbody>
</table>

Formula
LADDER$_{\text{DFA}} \in \text{NPSPACE}$

Def: \[\text{LADDER}_{\text{DFA}} = \{ \langle B, u, v \rangle \mid B \text{ is DFA, } L(B) \text{ has the ladder } y_1, \ldots, y_k, \text{ where } y_1 = u, \ y_k = v \} \]

Proof: Here's an algorithm:

1. Start by string $y = u$. Let $n = |u|$.
2. Repeat at most $\lfloor \frac{1}{\varepsilon} \rfloor$ times.
 2a. Nondeterministically change y at 1 character.
 2b. Check if $y = v$. If so, accept.
 2c. Check if $y \in L(B)$. Reject if $y \notin L(B)$.
3. Reject.

This uses linear space. \[\text{LADDER}_{\text{DFA}} \in \text{NPSPACE} \]
LADDER

Proof idea: Do recursion, but less recursion than a naive way by using binary search.

Subproblem: BOUNDED-L LADDER DFA

Claim: B-L can be solved w/ binary search.

Recursion depth \(\Theta(\log b) \).

At every level of recursion, we use \(\Theta(n) \).

Decide LADDER DFA, for a given input \(\langle B, u, v \rangle \), by passing \(\langle B, u, v, 1 \leq l^m \rangle \) into B-L. This uses \(\Theta(n) \cdot O(\log b) \) space
\[= \Theta(n) \cdot O(\log 13^m) \]
\[= O(n) \cdot O(n) = O(n^2) \]

So, LADDER$_{DFA} \in \text{PSPACE}$.

\[\text{NPSPACE} = \bigcup_{k} \text{languages that can be decided in } O(2^kn^k) \text{ space, nondeterministically} \]