1 Mapping Reductions

Let ALL_{TM} be defined as follows:

$$ALL_{TM} = \left\{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Sigma^* \right\}$$

Provide a mapping reduction to show that ALL_{TM} is undecidable.

Solution: We will provide a reduction from A_{TM} i.e. $A_{TM} \leq_m ALL_{TM}$ through a Turing-computable function f below. We define $f(\langle M, w \rangle) = \langle R \rangle$ where R is the following TM:

$R = \text{"On input } x:\n$

1. Simulate M on w.
2. If M ever accepts, accept x.

In other words f uses its input $\langle M, w \rangle$ to write the description of the above TM R. Note that f itself is not simulating M, that is the job of R. f just outputs the encoding of our definition of R so it is computable.

Finally note that when M accepts w then $L(R) = \Sigma^*$. Otherwise $L(R) = \emptyset$. Therefore f maps $\langle M, w \rangle \in A_{TM}$ to $R \in ALL_{TM}$ and $\langle M, w \rangle \notin A_{TM}$ to $R \notin ALL_{TM}$. We thus can conclude $A_{TM} \leq_m ALL_{TM}$ so ALL_{TM} is undecidable.

2 Computation Histories

- **Configurations:** At each step of a TM’s computation three things can change: the state, the content of the tape, and the location of the head in the tape. A configuration is a “snapshot” of these items encoded in a string. Suppose a TM is in state q and the content of the tape is uv where u and v are strings and the TM’s head is on the first symbol of v. Then we can encode this configuration as uqv.

- **Computation history:** An accepting computation history for TM M on input w is a sequence of configurations, C_0, C_1, \ldots, C_n such that C_0 is the starting configurations i.e. $C_0 = q_0w$, C_n is an accepting configuration i.e. $q \in C_n$ is an accept state, and for every $0 \leq i \leq n-1, C_{i+1}$ correctly represents M’s configuration one step after C_i. We write these sequences as a string $#C_0#C_1#\ldots#C_n#$.
• How do we check a given string represents an accepting computation history of M on w?

1. Check that C_0 is a the starting configuration.
2. Check that C_n is an accepting configuration.
3. For every $0 \leq i \leq k - 1$, check that C_{i+1} follows from C_i.

• Note that the above checks are all local. Therefore a Linear Bounded Automaton (LBA) can perform all the checks without using extra memory. So for an instance of (M, w) we can construct an LBA $A_{M,w}$ such that $A_{M,w}$ only accepts strings which are computation histories of M on w. To reiterate $A_{M,w}$ performs the above three steps and accepts if and only if all steps succeed. Note that when M accepts w then a valid computation history exists so $L(A_{M,w}) \neq \emptyset$. Otherwise when M does not accept w one of the above steps will always fail in any input to $A_{M,w}$ so $L(A_{M,w}) = \emptyset$. Hence $A_{TM} \leq_m E_{LBA}$ so E_{LBA} is undecidable.

Define ALL_{PDA} as follows:

$$ALL_{PDA} = \{(A) | A \text{ is a PDA and } L(A) = \Sigma^*\}$$

Show that ALL_{PDA} is undecidable.

Solution: The proof is similar to showing that E_{LBA} is undecidable. Assume towards a contradiction that ALL_{PDA} is decidable by a decider R. We construct a decider S for A_{TM}.

In proving that E_{LBA} is undecidable, we constructed an LBA $A_{M,w}$ that accepts a computation history of M on w. Here we will construct a PDA $B_{M,w}$ that will accept everything except the accepting computation history of M on w.

What makes a string NOT be an accepting computation history? Instead of verifying that all steps succeed we just need to find one step that fails. In other words either

1. C_0 is not the starting configuration
2. C_n is not the accepting configuration
3. For some $0 \leq i \leq n - 1$, C_{i+1} does not follow from C_i.

So $B_{M,w}$ needs to check that one of the above conditions hold. The first thing that $B_{M,w}$ is going to do is to nondeterministically guess which of the conditions to check. If it is the first one, $B_{M,w}$ accepts if C_0 is not the starting configuration. If it is the second one $B_{M,w}$ accepts if C_n is not an accepting configuration.

How does a PDA check the third condition? It will nondeterministically guess the value of i for which it needs to check that C_{i+1} does not follow from C_i. Now, it will push C_i onto the stack. Then, it will pop off the stack to compare with C_{i+1}.

But at this point $B_{M,w}$ faces a problem — the order of C_i is reverse to that of C_{i+1}. To solve this issue, we write the computation history differently — every other configuration appears in reverse order:

$\#C_0\#C_1^R\#\ldots\#C_{n-1}^R\#C_n\#$
or
\[
\text{#C}_0\text{#C}_1^R\# \ldots \text{#C}_{n-1}\text{#C}_n^R\#
\]
depending on the parity of \(n \).

Now, when \(B_{M,w} \) pops the stack, the configuration it receives is in the same order as the one it compares with. Finally, we construct the decider \(S \) for \(A_{TM} \).

\(S = \text{“On input } \langle M, w \rangle: \)

1. Build the PDA \(B_{M,w} \).
2. Run the decider for \(ALL_{PDA} \), \(R \), on \(\langle B_{M,w} \rangle \).
3. If \(R \) accepts, we reject.
4. Otherwise, accept.

Note that \(L(S) = \Sigma^* \) when \(M \) does not accept \(w \). Otherwise \(L(S) = \Sigma^* - \{ C \} \) where \(C \) is the accepting computation history of \(\langle M, w \rangle \).