Today’s Topics

- Re-explaining Non-CFL Language
 - \(\{ a^i b^j c^k \mid i > j > k \} \)
- Review: \(A_{TM} \) is Undecidable
- Proving Decidable
 - \(\{ <R, S> \mid R \text{ and } S \text{ are regular expressions and } L(R) \subseteq L(S) \} \)
 - \(\{ <R> \mid R \text{ is a regular expression and } L(R) \text{ is prefix-free} \} \)
 - \(\{ <D> \mid D \text{ is a DFA that accepts some palindrome} \} \)
 - \(\{ <D> \mid D \text{ is a DFA that accepts } w^R \text{ whenever it accepts } w \} \)
- Proving T-Recognizable
 - \(\{ <M> \mid M \text{ is a TM whose language is non-empty} \} \)
- Recap
- Bonus (time-permitting)
 - \(\{ <S> \mid S \text{ is a TM whose language is empty} \} \) is T-unrecognizable
 - 2TAPe = \(\{ \{M, w\} \mid M \text{ is a 2-tape TM that writes a non-blank symbol on 2nd tape on } w \} \)
 - Prove it is T-recognizable, but not T-decidable
Example: Proving Non-CFL Languages

Prove that \(\{ a^ib^jc^k \mid i > j > k \} \) is not a CFL

- \((\forall n \geq 0) (uv^nxy^nz \in L)\)
- \(|vy| \geq 1\)
- \(|vxy| \leq p\)

\[s = a^{p+2}b^{p+1}c^p \]
Review: A_{TM} is Undecidable

Proof by Contradiction

$A_{TM} = \{ <M, w> | M \text{ is a TM that accepts input } w \}$

- Assume TM H decides A_{TM}
 - H accepts $<M, w>$ iff M accepts w
 - H rejects $<M, w>$ iff M rejects or loops on w
- Will prove that H may never exist due to a contradiction
Recall assuming that \(H \) decides \(\text{ATM} = \{ <M, w> | M \text{ accepts } w \} \)

Use \(H \) to construct a TM \(D \)

\[
D = \text{“On input } <M> \\
1. \text{ Simulate } H \text{ on input } <M, <M>> \text{ ie: } (<M, w> \text{ where } w = <M>) \\
2. \text{ Reject if } H \text{ accepts. Accept if } H \text{ rejects.”}
\]

\(D \) accepts \(<M> \) iff \(M \) does not accept \(<M> \)

Contradiction: \(D \) accepts \(<D> \) iff \(<D> \) does not accept \(<D> \)
Review: A_{TM} is Undecidable

<table>
<thead>
<tr>
<th>All TM descriptions:</th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>...</th>
<th>$\langle D \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>acc</td>
<td>rej</td>
<td>acc</td>
<td>acc</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td>rej</td>
<td>rej</td>
<td>rej</td>
<td>rej</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_3</td>
<td>acc</td>
<td>acc</td>
<td>acc</td>
<td>acc</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>M_4</td>
<td>rej</td>
<td>rej</td>
<td>acc</td>
<td>acc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>rej</td>
<td>acc</td>
<td>rej</td>
<td>rej</td>
<td></td>
<td>??????</td>
</tr>
</tbody>
</table>
Proving Decidable

\{ <R, S> | R and S are regular expressions and L(R) \subseteq L(S) \}

D = "on input <R, S>
1. Convert R and S into DFA R' and S' respectively
2. Construct DFA T = R' intersect S'
3. Run EQ_DFA on <R', T> and return accordingly"

Proving Decidable

\{ <R> | R is a regular expression and L(R) is prefix-free \}

NOT prefix free = \{ "Star Wars", "b", "ac", "Star Wars is cool!" \}

D = "on input <R>
 1. Construct DFA R' from reg expr R
 2. Prune all out-going edges from accept states of R' to create DFA P
 (this filters all suffixed strings out of L(R'))
 3. Run EQ_DFA on R and P. Accept if EQ_DFA accepts. Reject otherwise."
Proving Decidable

\{ <D> | D is a DFA that accepts some palindrome \} palindrome = \{w+rev(w)\}

D has a palindrome -> intersection of L(D) and palindrome is non empty set
D has no palindrome -> intersection of L(D) and palindrome is empty set

Use construction from HW 2, problem 0.2: regular language \cap CFL = CFL

F = "on input <D>
1. Use construction from HW 2 to create PDA P that computes:
 CFL = reg lang intersect palindrome
2. Run E_PDA on P. Accept if E_PDA rejects. Reject otherwise."
Proving Decidable

\{ \langle D \rangle \mid \text{D is a DFA that accepts } w^R \text{ whenever it accepts } w \}
Proving T-Recognizable

\{ <M> \mid M \text{ is a TM whose language is non-empty} \}

R = "on input <M>
1. Simulate M on all inputs of \(\Sigma^* \) one by one
2. If M accepts any of the inputs, then accept"

If M really has empty language then will iterate forever over \(\Sigma^* \) and never terminate. But this is OK for T-Recog languages.
Recap