Reminder

- We defined the classes of languages that can be solved by Turing Machines in deterministic and non-deterministic logarithmic space to be \(L \) and \(NL \). Formally these Turing Machines have a read-only input tape and a separate tape to perform computation.

- \(NL \subseteq P \) since all \(O(\log n) \) space-configurations can be computed in \(2^{O(\log n)} = n^{O(1)} \) time, \(NL \subseteq SPACE(\log^2 n) \) by Savitch’s Theorem.

- A log-space transducer is a Turing Machine with an input and output tape along with a work tape limited to logarithmic space. We say \(A \leq_L B \) i.e. \(A \) is log-space reducible to \(B \) if and only if a log-space transducer reduces \(A \) to \(B \).

- \(A \) if \(NL \)-complete if and only if \(A \in NL \) and every \(NL \) language is log-space reducible to \(A \).

- \(PATH \in NL \)-complete by modeling the tape configurations of an \(NL \) language with a graph computable in log-space.

- \(NL = coNL \) by showing \(PATH \in NL \) and using the fact that every \(coNL \) language is log-space reducible to \(PATH \).

- To show \(PATH \in NL \), we note that if we knew the number of nodes \(c \) reachable from \(s \) we can test for no path between \(s \) and \(t \) with the following algorithm:

 "On input \(\langle G, s, t \rangle \) :
 1. Initialize \(d = 0 \)
 2. For \(v \in V \)
 a. Run a non-deterministic branch of \(PATH(G, s, v) \) and increment \(d \) by 1 if it accepts.
 b. If it did accept and \(v = t \), reject.
 3. If \(d = c \), accept."

The above algorithm works since can determine whether it only accepts when it does not find a path from \(s \) to \(t \) AND has accounted for all the reachable vertices from \(s \).

- To calculate \(c \) in log-space we iteratively calculate \(R_i \) the set of vertices reachable from \(s \) within \(i \) steps and let \(c = |R_{|V|}| \)
Example 1: Strongly-Connected is NL-complete

We say that a directed graph is strongly connected if every two nodes are connected by a directed path in each direction.

Let \(SC = \{ (G) \mid G \text{ is a directed strongly connected graph} \} \)

Show that \(SC \) is NL-complete.

We first show \(SC \in NL \) with the following algorithm.

“On input \(\langle G \rangle \):

1. For every two nodes \(u \) and \(v \):
 (a) Run \(\text{PATH}(G, u, v) \)
 (b) If reject, reject.

2. Else at the end of the loop, accept.”

Now we show \(\text{PATH} \leq_L SC \).

Given \(\langle G, s, t \rangle \) we construct \(\langle G' \rangle \) by adding an edge from \(v \) to \(s \) and from \(t \) to \(v \) for all \(v \in V \).

If \(\langle G, s, t \rangle \in \text{PATH} \) then for arbitrary vertices \(u, v \) in \(G' \) we can form the path \(u \to s \leadsto t \to v \) therefore \(\langle G' \rangle \in SC \).

If \(\langle G' \rangle \in SC \) then there must exist a simple path (does not repeat vertices) from \(s \) to \(t \) in \(G' \). Since the edges we added in the reduction either take us out of \(t \) or into \(s \) they cannot exist in this simple path. Therefore a path between \(s \) and \(t \) in \(G' \) is also a path in \(G \) so \(\langle G, s, t \rangle \in \text{PATH} \).
Example 2: Bipartiteness is in NL

An undirected graph is bipartite if its nodes may be divided into two sets so that all edges go from a node in one set to a node in the other set.

Let \[\text{BIPARTITE} = \{ \langle G \rangle \mid G \text{ is an undirected bipartite graph} \} \]

Show that BIPARTITE ∈ NL.

Convince yourself that the following lemma is true.

Lemma: \(G \) is bipartite iff \(G \) does not contain an odd-length cycle.

Since NL = coNL thus allows us to provide a non-deterministic algorithm that accepts if \(G \) has an odd-length cycle to show BIPARTITE ∈ coNL hence the result. We can detect odd-length cycles with the following algorithm

"On input \(\langle G \rangle \):

1. Initialize \(d = 0 \)

2. Non-deterministically select \(v \in V \) and let \(\text{start} = v \)

3. While \(d \leq V \)
 a. Increment \(d \) by 1
 b. Reassign \(v \) non-deterministically to a neighbor of \(v \) i.e. set \(v = u \) where \((u, v) \in E\)
 c. If \(u = \text{start} \) and \(d \) is odd, accept.

2. Else at end of loop, reject."