Today’s Topics

- Review: Space Hierarchy
- Review: Time Hierarchy
- Prove: STRONGLY-CONNECTED is NL-Complete
- Rewording: NL=coNL
- \(A \leq_L B \) and \(B \in L \) implies \(A \in L \)
Review: Space Hierarchy

Review: $f(n) \in o(g(n))$ means that: $f(n) / g(n) \rightarrow 0$

Goal: $SPACE(o(f(n))) \subsetneq SPACE(O(f(n)))$

Idea: Show that a language A exists that is decidable in $O(f(n))$ space but not in $o(f(n))$ space. This is done using a diagonalization.
Come up with a diagonalization TM D such that:

1. D runs in $O(f(n))$ space
2. D ensures that its language is distinct from all $L(M)$ where TM M runs in $o(f(n))$ space

$D =$ “On input w

1. Mark off $f(n)$ tape cells where $n = |w|$. If use more tape, reject
2. If w does not contain a TM description for M, reject
3. Simulate M on w (on the rest of w)
 a. Accept if simulation rejects
 b. Reject if simulation accepts”
Review: Space Hierarchy (cont.)

D = “On input \(w \)

1. Mark off \(f(n) \) tape cells where \(n = |w| \). If use more tape, reject
2. If \(w \) does not contain a TM description for \(M \), reject
3. Simulate \(M \) on \(w \)
 a. Accept if simulation rejects
 b. Reject if simulation accepts”

Issues:

1. What if \(M \) loops?
 a. Stop \(M \) if it runs for \(2^{f(n)} \) steps.
 Need to include a counter, adds \(f(n) \) space is OK
2. How to compute \(f \)?
 a. Need to assume \(f \) is space-constructible. ie) can compute \(f \) in \(O(f(n)) \) space. Most functions such as \(\log(n) \), \(n \), \(n^2 \), \(2^n \) are space-constructible

Note: not space-constructible is \(\log(\log(n)) \)
Review: Time Hierarchy

Goal: \(\text{TIME}(\omega(f(n) / \log(f(n)))) \subsetneq \text{TIME}(O(f(n))) \)

Same Idea: Show that a language A exists that is decidable in \(O(f(n)) \) time but not in \(o(f(n) / \log(f(n))) \) time. This is done using a diagonalization.
Review: Time Hierarchy (cont.)

Come up with a diagonalization TM D such that:

1. D runs in $O(f(n))$ time
2. D ensures that its language is distinct from all $L(M)$ where TM M runs in $o(f(n) / \log(f(n)))$ time

D = “On input w

1. Compute $f(n)$
2. If $w \neq <M>10^*$ for some TM M, reject
3. Simulate M on w for $f(n) / \log(f(n))$ steps
 a. Accept if M rejects
 b. Reject if M accepts or has not halted yet”
Log factor comes from “Simulate M on w for f(n) / \log(f(n)) steps”

In order to keep track of the counter (of size \log(f(n))), need to carry it around with the head as added baggage.

\[
\begin{array}{cccccc}
 a & b & c & c & b & a \\
\end{array}
\]

\[\text{TIME}(o(f(n))) \neq \text{TIME}(O(f(n) * \log(f(n))))\]

The act of moving this counter around costs O(\log(f(n))) time per step.

Therefore, a TM can only simulate a TM that is O(\log(f(n))) smaller than it.
Prove: STRONGLY-CONNECTED is NL-Complete

Definition: STRONGLY-CONNECTED

A directed graph where a path exists between every pairing of nodes

Example:
1. STRONGLY-CONNECTED \in NL
2. PATH \leq_L STRONGLY-CONNECTED

Proving STRONGLY-CONNECTED \in NL is easier via:

NOT-STRONGLY-CONNECTED \in NL

meaning

STRONGLY-CONNECTED \in coNL = NL
STRONGLY-CONNECTED is NL-Complete (cont.)

Show: \(\text{NOT-STRONGLY-CONNECTED} \in \text{NL} \)

Ideas?

\(\text{NOT-STRONGLY-CONNECTED} = \text{"On input } G: \)
1. nondet. guess two vertices \(u, v \)
2. Return NOT-PATH(\(G, u, v \))"\n
Since PATH in NL, NOT-PATH in coNL=NL. So can use that in proving
\(\text{NOT-STRONGLY-CONNECTED} \) in NL.
STRONGLY-CONNECTED is NL-Complete (cont.)

Show: $\text{PATH} \leq_L \text{STRONGLY-CONNECTED}$

$\text{PATH} \rightarrow \text{STRONGLY-CONNECTED}$

$\text{NOT-PATH} \rightarrow \text{NOT-STRONGLY-CONNECTED}$
Rewording: NL=coNL

Need to prove:

NOT-PATH ∈ NL

Since NOT-PATH is coNL-Complete (since PATH is NL-Complete)

Two parts:

1. An NL TM can calculate the number of nodes c reachable from s in k steps
2. With that knowledge try to guess all c nodes where k = m and if desired node t is not one of them, then NOT-PATH(G,s,t) accepts
Rewording: NL=coNL

Prove NOT-PATH \in NL

Need an NL algorithm that determines if $<G,s,t>$ has no path from s to t

Two parts:

1. An NL TM can calculate the number of nodes c reachable from s in k steps
2. With that knowledge try to guess all c nodes where $k = m$ and if desired node t is not one of them, then NOT-PATH(G,s,t) accepts
Rewording: NL=coNL

First: Assume an NL TM can calculate the number of nodes \(c \) reachable from \(s \) in \(k \) steps

Have an NL TM:

- Go through all \(m \) nodes in \(G \), guessing if a node \(u \) is reachable from \(s \) within \(k \) steps
- If so, increment a \textit{reachable} counter
- Also if the guessed \(u = t \), then record a Flag that \(t \) was seen
- Once all \(m \) nodes have been iterated
 - Check to see if the \textit{reachable} counter = \(c \), reject if not
 - If \(t \) was seen via the Flag being set, reject
 - Otherwise accept
Rewording: NL=coNL

Show: An NL TM can calculate the number of nodes c reachable from s in k steps

Let c_i be the number of nodes reachable from s within i steps

We know that $c_0 = 1$, s itself reachable within 0 steps

Show strategy to compute c_{i+1} from c_i.

(This is a recursive induction proof)
Rewording: NL=coNL

Show: An NL TM can calculate the number of nodes c reachable from s in k steps.

Let A_i be the nodes reachable from s within i steps, $A_0 = \{s\}$

A NL TM:

1. Go through all of the m nodes. Guess if v belongs to A_{i+1}
 a. Guesses if u belongs to A_i.
 i. Verifies if such path exists from s within i steps. If so, increment a *inner* counter
 ii. If (u,v) is an edge, set a Flag that v is in A_{i+1}
 b. If *inner counter* = c_i, means that A_i was correctly guessed
 i. If so and if Flag is set, increment *outer* counter
2. Return *outer* counter which is c_{i+1}
$A \leq_L B$ and $B \in L$ implies $A \in L$

Simple Lemma:

Same also holds for NL as well.