Course Information

Instructor: Michael Sipser, 2–438, 617–253–4992, sipser@mit.edu, office hours: Tu 4:15–6
Homepage: math.mit.edu/18.404

TAs: Fadi Atieh, is fadi77@mit.edu
 Kerri Lu, kerrilu@mit.edu
 Zhezheng Luo, ezzlou@mit.edu
 Rene Reyes, rdreyes@mit.edu
 George Stefanakis, stefanag@mit.edu
 Sam Tenka, samtenka@mit.edu
 Nathan Weckwerth, nweck@mit.edu

Course Outline

I Automata and Language Theory (2 weeks). Finite automata, regular expressions, push-down automata, context free grammars, pumping lemmas.

III Complexity Theory (7 weeks). Time and space measures of complexity, complexity classes P, NP, L, NL, PSPACE, BPP and IP, complete problems, P versus NP conjecture, quantifiers and games, hierarchy theorems, provably hard problems, relativized computation and oracles, probabilistic computation, interactive proof systems.
 – Final Exam: 3 hours, emphasizing second half of the course.

Prerequisites

To succeed in this course you require experience and skill with mathematical concepts, theorems, and proofs. If you did reasonably well in 6.042, 18.200, or any other proof-oriented mathematics course, you should be fine. The course moves quickly, covering about 90% of the textbook. The homework assignments generally require proving some statement, and creativity in finding proofs will be necessary.

Note that 6.045 has a significant overlap with 18.404, depending on who is teaching 6.045, and it often uses the same book though it generally covers less, with less depth, and with easier problem sets. Taking 6.045 before 18.404 isn’t required or recommended.

Should I register for 18.404, 18.4041, or 6.840?

Course 18 and 18C majors may register only for 18.404 which carries undergraduate (U) credit. All other majors, including double majors with Course 18 and 18C, should register for 18.4041 or 6.840 which carry graduate (G) credit (may be useful in MEng programs). The subject number doesn’t affect the course material or grading.

Grading

• Homework: 40% of grade, based on 6 biweekly problem sets. Cooperating on homework is allowed and may be helpful, but you are strongly encouraged to spend some time thinking about each problem yourself first. Solutions must be written up individually (not copied). Using course bibles or other outside or online materials is not permitted. Homework is submitted online via Gradescope, due by 2:30pm on days given by the Course Schedule (see
homepage). Unexcused late homework will be accepted on the following day up to 11:59pm, but will be charged a 1 point per problem (out of the 10 point maximum) late penalty. After that date, homework may be submitted by email only. It may not be graded but will be kept for reference.

Every problem set will contain one or two optional problems. I will consider your solutions to these challenging problems when assigning A+ grades and when writing recommendation letters. Besides that, solving the optional problems will not affect your course grade.

If personal or medical problems interfere with your work, please contact Student Support Services at studentlife.mit.edu/s3.

• **Exams**: One midterm (20% of grade) on October 21, 2021 during a class session and one final (40% of grade) during finals week. Both are open book.

Textbook

Introduction to the Theory of Computation, third edition, Sipser, Cengage, 2013. You may use the second edition, but it is missing some additional practice problems. We will cover Chapters 1, 2 (except 2.4), 3, 4, 5, 6.1, 7, 8, 9.1, 9.2, 10.2 (except the part on Primality), and 10.4 through Theorem 10.33.

Recitations

Recitations are primarily for going over lecture material in more detail, giving additional examples, and answering questions. Recitation attendance is optional, and you may attend any recitation you wish. BUT, if you are having trouble, we expect you to attend recitations weekly, and active participation may improve low grades.