Problem Set 2

Read all of Chapters 3 and 4.

0.1 Read and solve, but do not turn in: Book, 2.16. [CFLs closed under \cup, \circ, $*$]
Solve by using both CFGs and PDA.

0.2 Read and solve, but do not turn in: Book, 2.18. [$\text{CFL} \cap \text{regular} = \text{CFL}$]
You can check your solution with the one in the book.

0.3 Read and solve, but do not turn in: Book, 2.26. [Chomsky normal form]

1. Let $\Sigma = \{0, 1\}$ and let $C_2 = \{ztz \mid z \in 0^* \text{ and } t \in 0^*10^*10^*, \text{ where } |t| = |z|\}$.

 (a) Show that C_2 is not a CFL.
 (b) Is $C_2 \cup (\Sigma \Sigma \Sigma)^* \text{ a CFL? Why or why not?}$
 (c) Is $C_2 \cup \Sigma(\Sigma \Sigma \Sigma)^* \text{ a CFL? Why or why not?}$

2. Let $G = (V, \Sigma, R, \langle \text{stmt} \rangle)$ be the following grammar. $\Sigma = \{\text{if}, \text{condition}, \text{then}, \text{else}, \text{a:=}1\}$, $V = \{\langle \text{stmt} \rangle, \langle \text{if-then} \rangle, \langle \text{if-then-else} \rangle, \langle \text{assign} \rangle\}$ and the rules are:

 $\langle \text{stmt} \rangle \rightarrow \langle \text{assign} \rangle | \langle \text{if-then} \rangle | \langle \text{if-then-else} \rangle$

 $\langle \text{if-then} \rangle \rightarrow \text{if condition then } \langle \text{stmt} \rangle$

 $\langle \text{if-then-else} \rangle \rightarrow \text{if condition then } \langle \text{stmt} \rangle \text{ else } \langle \text{stmt} \rangle$

 $\langle \text{assign} \rangle \rightarrow \text{a:=}1$

 (a) Show that G is ambiguous.
 (b) Give a new unambiguous grammar that generates $L(G)$.
 (You do not need to prove that your grammar works or that it is unambiguous, but please add a few comments about why it does work to help the grader.)

3. A queue automaton is like a push-down automaton except that the stack is replaced by a queue. A queue is a tape allowing symbols to be written only on the left-hand end and read only at the right-hand end. Each write operation (we’ll call it a push) adds a symbol to the left-hand end of the queue and each read operation (we’ll call it a pull) reads and removes a symbol at the right-hand end. As with a PDA, the input is placed on a separate read-only input tape, and the head on the input tape can move only from left to right. The input tape contains a cell with a blank symbol following the input, so that the end of the input can be detected. A queue automaton accepts its input by entering a special accept state at any time. Show that a language can be recognized by a deterministic queue automaton iff the language is Turing-recognizable.

4. Show that a language is decidable iff some enumerator enumerates the language in string order. (String order is the standard length-increasing, lexicographic order, see text p 14).

5. Let C be a language. Prove that C is Turing-recognizable iff a decidable language D exists such that $C = \{x \mid \exists y \in \{0, 1\}^* \langle x, y \rangle \in D\}$. (Hint: You must prove both directions of the “iff”. The $\langle \longrightarrow \rangle$ direction is easier. For the $\langle \rightarrow \rangle$ direction, think of y as providing additional information that allows you to confirm when $x \in C$, but without the possibility of looping.)

6. Consider the problem of testing whether a pushdown automaton ever uses its stack. Formally, let $\text{PUSHER} = \{\langle P \rangle \mid P \text{ is a PDA that pushes a symbol on its stack on some (possibly non-accepting) branch of its computation at some point on some input } w \in \Sigma^*\}$. Show that PUSHER is decidable. (Hint: Use a theorem from lecture to give a short solution.)

7* (optional) Let the rotational closure of language A be $\text{RC}(A) = \{yx \mid xy \in A \text{ where } x, y \in \Sigma^*\}$. Show that the class of CFLs is closed under rotational closure.