Problem Set 2

Please turn in each problem on a separate page with your name.

Read all of Chapters 3 and 4.

0.1 Read and solve, but do not turn in: Book, 2.16. [CFLs is closed under \cup, \circ, \ast]
Solve by using both CFLs and PDAs.

0.2 Read and solve, but do not turn in: Book, 2.18. [CFL \cap regular = CFL]
You can check your solution with the one in the book.

0.3 Read and solve, but do not turn in: Book, 2.26. [Chomsky normal form]

1. Let $\Sigma = \{0, 1\}$ and let $C_2 = \{tut | t \in 0^* \text{ and } u \in 0^*10^*10^*, \text{where } |t| = |u|\}.$
 (a) Show that C_2 is not a CFL.
 (b) Is $C_2 \cup (\Sigma\Sigma)^*$ a CFL? Why or why not?
 (c) Is $C_2 \cup \Sigma(\Sigma\Sigma)^*$ a CFL? Why or why not?

2. Let $G = (V, \Sigma, R, \langle \text{stmt} \rangle)$ be the following grammar. $\Sigma = \{\text{if, condition, then, else, a:=1}\}$,
 $V = \{\langle \text{stmt} \rangle, \langle \text{if-then} \rangle, \langle \text{if-then-else} \rangle, \langle \text{assign} \rangle\}$ and the rules are:
 $$\langle \text{stmt} \rangle \rightarrow \langle \text{assign} \rangle \mid \langle \text{if-then} \rangle \mid \langle \text{if-then-else} \rangle$$
 $$\langle \text{if-then} \rangle \rightarrow \text{if condition then } \langle \text{stmt} \rangle$$
 $$\langle \text{if-then-else} \rangle \rightarrow \text{if condition then } \langle \text{stmt} \rangle \text{ else } \langle \text{stmt} \rangle$$
 $$\langle \text{assign} \rangle \rightarrow \text{a:=1}$$

 (a) Show that G is ambiguous.
 (b) Give a new unambiguous grammar that generates $L(G)$.
 (You do not need to prove that your grammar works or that it is unambiguous, but
 please add a few comments about why it does work to help the grader.)

3. A Turing machine with left reset is similar to an ordinary Turing machine, but the
 transition function has the form $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{R, \text{RESET}\}.$ If $\delta(q,a) = (r,b,\text{RESET})$,
 when the machine is in state q reading an a, the machine's head jumps to the left-hand end
 of the tape after it writes b on the tape and enters state r. Note that these machines do not
 have the usual ability to move the head one symbol left. Show that Turing machines with
 left reset recognize the class of Turing-recognizable languages.

4. Let $PAL_{\text{DFA}} = \{\langle M \rangle | M \text{ is a DFA that accepts some palindrome}\}$. Show that PAL_{DFA} is
 decidable. (Hint: Theorems from lecture are helpful here.)

5. Let A and B be two disjoint languages. Say that language C separates A and B if $A \subseteq C$
 and $B \subseteq \overline{C}$. Show that if A and B are disjoint, and \overline{A} and \overline{B} are both Turing-recognizable,
 then some decidable language separates A and B.

6. Let C be a language. Prove that C is Turing-recognizable iff a decidable language D exists
 such that $C = \{x | \exists y \in \{0,1\}^* (\langle x, y \rangle \in D)\}$.

7. (optional) Show that every infinite T-recognizable language has an infinite decidable subset.