Read all of Chapters 1 and 2 except Section 2.4.

0.1 Read and solve, but do not turn in: Book, 1.14. [swapping NFA accept/non-accept states]
0.2 Read and solve, but do not turn in: Book, 1.31. [closure under reversal]
0.3 Read and solve, but do not turn in: Book, 1.46b. [Pumping lemma]

You can assume the results from the above problems when solving the problems below.

1. (a) Let $B = \{1^k y \mid y \in \{0, 1\}^* \text{ and } y \text{ contains at least } k \text{ 1s, for } k \geq 1\}$.
 Show that B is a regular language.

 (b) Let $C = \{1^k y \mid y \in \{0, 1\}^* \text{ and } y \text{ contains at most } k \text{ 1s, for } k \geq 1\}$.
 Show that C isn’t a regular language.

2. The Hamming distance $H(x, y)$ between two strings x and y of equal length, is the number of corresponding symbols at which x and y differ. For example, $H(1101111, 0001111) = 2$.
 For any language A, let $N_1(A) = \{w \mid H(w, x) \leq 1 \text{ for some } x \in A\}$.
 Show that the class of regular languages is closed under the N_1 operation.

3. Let $D = \{w \mid w \in \{0, 1\}^* \text{ is not a palindrome (i.e., } w \neq w^R)\}$. Prove that D is not regular.

4. Let M_1 and M_2 be DFAs that have k_1 and k_2 states, respectively, and let $U = L(M_1) \cup L(M_2)$.

 (a) Show that if $U \neq \emptyset$, then U contains some string s, where $|s| < \max(k_1, k_2)$.

 (b) Show that if $U \neq \Sigma^*$, then U excludes some string s, where $|s| < k_1k_2$.

5. Let x and y be strings over some alphabet Σ. Say x is a substring of y if $y \in \Sigma^*x\Sigma^*$ and say x is a major substring of y if x is a substring of y and $|x| \geq \frac{1}{2}|y|$.
 For any language B, let $MS(B) = \{x \mid x \text{ is a major substring of } y \text{ for some } y \in B\}$.
 Show that if B is regular then $MS(B)$ is context-free.

6. Consider the following CFG G:
 $$S \rightarrow aSb \mid aSbb \mid \varepsilon$$
 Describe $L(G)$ and show that G is ambiguous.
 Give an unambiguous grammar H where $L(H) = L(G)$ and prove that H is unambiguous.

7* (optional) Strengthen Problem 5 by showing that if B is regular then $MS(B)$ is also regular.