Problem Set 1

Please turn in each problem on a separate page with your name.

Read all of Chapters 1 and 2 except Section 2.4.

0.1 Read and solve, but do not turn in: Book, 1.14. [swapping NFA accept/non-accept states]

0.2 Read and solve, but do not turn in: Book, 1.31. [closure under reversal]

1. Let \(\Sigma_3 = \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ldots, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \right\} \).

\(\Sigma_3 \) contains all size 3 columns of 0s and 1s. A string of symbols in \(\Sigma_3 \) gives three rows of 0s and 1s. Consider each row to be a binary number and let

\[B = \{ w \in \Sigma_3^* \mid \text{the bottom row of } w \text{ is the sum of the top two rows} \} \]

For example, \(\begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} \in B, \text{ but } \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} \not\in B \). Show that \(B \) is regular.

(Hint: Working with \(B^R \) is easier. You may assume the result claimed in Problem 1.31.)

2. Let \(\Sigma_3 \) be the same as in Problem 1. Let

\[M = \{ w \in \Sigma_3^* \mid \text{the bottom row of } w \text{ is the product of the top two rows} \} \]

For example, \(\begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} \in M, \text{ but } \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} \not\in M \). Show that \(M \) is not regular.

3. Let \(\Sigma = \{0,1\} \).

(a) Let \(TUT = \{ tut \mid t, u \in \Sigma^* \} \). Show \(TUT \) is regular.

(b) Let \(TUTU = \{ tutu \mid t, u \in \Sigma^* \} \). Show \(TUTU \) is not regular.

4. For languages \(A \) and \(B \), let the **shuffle** of \(A \) and \(B \) be the language

\[\{ w \mid w = a_1 b_1 \cdots a_k b_k, \text{ where } a_1 \cdots a_k \in A \text{ and } b_1 \cdots b_k \in B, \text{ each } a_i, b_i \in \Sigma^* \} \]

Show that the class of regular languages is closed under shuffle.

5. Let \(\Sigma = \{0,1\} \). Let \(WW_k = \{ w w \mid w \in \Sigma^* \text{ and } w \text{ is of length } k \} \).

Show that for each \(k \), no DFA can recognize \(WW_k \) with fewer than \(2^k \) states.

Describe a much smaller NFA for \(\overline{WW}_k \), the complement of \(WW_k \).

6. (a) Use CFGs to show that the class of CFLs is closed under union.

(b) Let \(E = \{ a^i b^j \mid i \neq j \text{ and } 2i \neq j \} \). Use part (a) to show that \(E \) is a context-free language.

(Hint: Express \(E \) in a different way.)

7. * (\(\star \) means optional) Let \(x \) and \(y \) be strings over some alphabet \(\Sigma \). Say \(x \) is a **substring** of \(y \) if \(y \in \Sigma^* x \Sigma^* \) and say \(x \) is a **major substring** of \(y \) if \(x \) is a substring of \(y \) and \(|x| \geq \frac{1}{2} |y| \).

For any language \(B \), let \(MS(B) = \{ x \mid x \text{ is a major substring of } y \text{ for some } y \in B \} \).

Show that if \(B \) is regular then \(MS(B) \) is regular.