Problem Set 1

Read all of Chapters 1 and 2 except Section 2.4.

0.1 Read and solve, but do not turn in: Book, 1.14. [swapping NFA accept/non-accept states]

0.2 Read and solve, but do not turn in: Book, 1.31. [closure under reversal]

0.3 Read and solve, but do not turn in: Book, 1.46c. [Pumping lemma]

1. Let \(\Sigma_2 = \{ [0]_0, [0]_1, [1]_0, [1]_1 \} \). Here, \(\Sigma_2 \) contains all columns of 0s and 1s of height two. A string of symbols in \(\Sigma_2 \) gives two rows of 0s and 1s. Consider each row to be a binary number and let
\[
D = \{ w \in \Sigma_2^* \mid \text{the top row of } w \text{ is a larger number than is the bottom row} \}.
\]
For example, \([0] \quad [0] \quad [1] \quad [0] \in D\), but \([0] \quad [1] \quad [1] \quad [0] \notin D\). Show that \(D \) is regular.

2. Let \(\Sigma_2 \) be the same as in Problem 1. Let
\[
E = \{ w \in \Sigma_2^* \mid \text{the bottom row of } w \text{ is the reverse of the top row of } w \}.
\]
For example, \([1] \quad [1] \quad [0] \quad [1] \in E\), but \([1] \quad [1] \quad [1] \quad [0] \notin E\). Show that \(E \) is not regular.

3. Let \(A \) be any language. Define \(\text{DROP-ONE}(A) \) to be the language containing all strings that can be obtained by removing one symbol from a string in \(A \). Thus, \(\text{DROP-ONE}(A) = \{ xy \mid x, y \in \Sigma^* \} \).

Show that the class of regular languages is closed under the \(\text{DROP-ONE} \) operation.

Give both a proof by picture and a more formal proof by construction as in Theorem 1.47.

4. Let \(\Sigma = \{0, 1\} \). Let \(WW_k = \{ ww \mid w \in \Sigma^* \text{ and } w \text{ is of length } k \} \).

(a) Show that for each \(k \), no DFA can recognize \(WW_k \) with fewer than \(2^k \) states.

(b) Describe a much smaller NFA for \(\overline{WW}_k \), the complement of \(WW_k \).

5. Let \(\Sigma = \{0, 1\} \).

(a) Let \(A = \{ 0^k u 0^k \mid k \geq 1 \text{ and } u \in \Sigma^* \} \). Show \(A \) is regular.

(b) Let \(B = \{ 0^k 1 u 0^k \mid k \geq 1 \text{ and } u \in \Sigma^* \} \). Show \(B \) is not regular.

6. Let \(\Sigma = \{0, 1\} \) and let \(C_1 = \{ trt \mid t \in 0^* \text{ and } r \in 0^* 10^* \}, \) where \(|t| = |r| \). The notation \(|x| \) means the length of string \(x \). Show that \(C_1 \) is a CFL, by giving a CFG and by giving a PDA. You do not need to prove that your solutions work, but please give comments to assist the grader. (Hint: This problem is tricky but not complicated. It has a CFG with three rules.)

7. \(\star \) (optional) For any language \(A \) let \(RC(A) = \{ xy \mid xy \in A \} \).

Show that the class of CFLs is closed under the \(RC \) operation.