Reminder

- One convenient definition.

Definition 1 A language A is co-Turing-Recognizable if \overline{A} is Turing-Recognizable.

- Mapping Reductions: $A \leq_m B$ if there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

In picture,

```
A -----> B
     ^   |
     f   |
     |   v
     B -----> A
```

- Using mapping reductions:
 - To show that B is not Turing-Recognizable, show that $\overline{A_{TM}} \leq_m B$.
 - To show that B is not co-Turing-Recognizable, show that $A_{TM} \leq_m B$.

- Summary, in a diagram, of our understating of the computation power of the different models we saw:
Note that the intersection of the Turing-Recognizable languages and the co-Turing-Recognizable languages is exactly Turing-Decidable languages. This is due to the theorem we saw in class that A is decidable iff both A and \overline{A} are Recognizable.

Example 1 — Two Tape Turing Machine

Let

$$2\text{TAPE} = \left\{ \langle M, w \rangle \mid M \text{ is a two-tape TM that writes a nonblank symbol in its second tape when it is run on } w \right\}$$

Show that 2TAPE is recognizable and undecidable.

Solution

2TAPE is recognizable. To show that 2TAPE is recognizable we construct a TM M that recognize it.

$M = \text{“On input } \langle M, w \rangle, \text{ where } M \text{ is a two tape TM and } w \text{ is any string:}$$

1. Run M on w.
2. If during its run, M writes a non-blank symbol on its second tape, $accept$.
3. Otherwise, $reject$.

2TAPE is undecidable. We show that A_{TM} reduces to 2TAPE. Assume towards a contradiction that a TM R decides 2TAPE. Then construct TM S that uses R to decide A_{TM}.

$S = \text{“On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ is any string:}$$

1. Construct the following two-tape TM T.
2. Simulate M on x using the first tape.
3. If M accepts, write a non-blank symbol on the second tape.”
2. Run \(R \) on \(\langle T, w \rangle \).
3. If \(R \) accepts, accept. If \(R \) rejects, reject."

We can write this reduction as a mapping reduction \(A_{TM} \leq_m 2\text{TAPe}: f(\langle M, w \rangle) = \langle T, w \rangle \).

Example 2 — The Infinity Language

Let

\[
INF_{TM} = \{ \langle M \rangle \mid M \text{ is a Turing machine and } |L(M)| = \infty \}.
\]

Show that \(INF_{TM} \) is not Turing-Recognizable and not co-Turing-Recognizable.

Solution

\(INF_{TM} \text{ is not co-Turing-Recognizable.} \) We show \(A_{TM} \leq_m INF_{TM} \). We do so using the same reduction we used in class for the language \(E_{TM} \), namely the machine \(M_w \). Recall the given \(M \) and \(w \), we defined

\(M_w = \text{“On input } x:\) \\
1. Erase \(x \) from the tape. \\
2. Simulate \(M \) on \(w \). \\
3. If \(M \) accepts, accept. \\
4. If \(M \) rejects, reject.”

The mapping reduction is now \(f(\langle M, w \rangle) = \langle M_w \rangle \). Clearly, \(f \) is computable.

- If \(M \) accepts \(w \), then \(L(M_w) = \Sigma^* \), and thus \(|L(M_w)| = \infty \).
- If \(M \) does not accept \(w \), then \(L(M_w) = \emptyset \), and thus \(|L(M_w)| = 0 \neq \infty \).

\(INF_{TM} \text{ is not Turing-Recognizable.} \) We show \(\overline{A_{TM}} \leq_m INF_{TM} \). This is a more challenging task. We need to come up with a machine that has a infinite language when \(M \) does not accept \(w \). We use the technique of “controlled execution” (or “timed execution”), where we simulate a machine for finite amount of steps. Only this time, the number of steps we simulate will depend on the input. Define

\(T = \text{“On input } x:\) \\
1. Simulate \(M \) on \(w \) for \(|x| \) of steps. \\
2. If \(M \) accepts, reject. \\
3. If \(M \) does not accept, accept.”

The mapping reduction is now \(f(\langle M, w \rangle) = \langle T \rangle \). Clearly, \(f \) is computable.

- If \(M \) accepts \(w \), then it does so after finite number of steps, say \(n \). Now, every input \(x \) with \(|x| \geq n \), \(T \) will reject. Since there are only finite number of strings of length at most \(n \), \(L(T) \) is finite and \(\langle T \rangle \notin INF_{TM} \).
- If \(M \) does not accept \(w \), then \(L(T) = \Sigma^* \), and thus \(|L(T)| = \infty \).