Lecture 24

Last time:
- Probabilistic computation
- The class BPP
- Branching programs
- Arithmetization
- Started showing $EQ_{ROBP} \in \text{BPP}$

Today:
- Finish $EQ_{ROBP} \in \text{BPP}$

Posted: Sample problems for the final exam (to be held on Thursday, December 17).
Review: Probabilistic TMs and BPP

Defn: A probabilistic Turing machine (PTM) is a variant of a NTM where each computation step has 1 or 2 possible choices.

Defn: For $\epsilon \geq 0$ say PTM M decides language A with error probability ϵ if for every w, $\Pr[M$ gives the wrong answer about $w \in A] \leq \epsilon$.

Defn: $\text{BPP} = \{A |$ some poly-time PTM decides A with error $\epsilon = \frac{1}{3}\}$

Amplification lemma: $2^{-\text{poly}(n)}$

Check-in 24.1
Actually using a probabilistic algorithm presupposes a source of randomness. Can we use a standard pseudo-random number generator (PRG) as the source?

(a) Yes, but the result isn’t guaranteed.
(b) Yes, but it will run in exponential time.
(c) No, a TM cannot implement a PRG.
(d) No, because that would show $P = \text{BPP}$.

Check-in 24.1

Check-in 24.1

Review: Branching Programs

Defn: A branching program (BP) is a directed, acyclic (no cycles) graph that has
1. Query nodes labeled x_i and having two outgoing edges labeled 0 and 1.
2. Two output nodes labeled 0 and 1 and having no outgoing edges.
3. A designated start node.

Theorem: EQ_{BP} is coNP-complete (on pset 6)

Defn: A BP is read-once if it never queries a variable more than once on any path from the start node to an output.

Defn: $EQ_{ROBP} = \{(B_1, B_2) | B_1$ and B_2 are equivalent read-once BPs$\}$

Theorem: $EQ_{ROBP} \in BPP$
Proof idea: Run B_1 and B_2 on a randomly selected non-Boolean input and accept if get same output.
Method: Use arithmetization (simulating \land and \lor with $+$ and \times) to define BP operation on non-Boolean inputs.
Boolean Labeling

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$
The BP follows its execution path.
Label all nodes and edges on the execution path with 1
and off the execution path with 0.
Output the label of the output node 1.

Obtain the labeling inductively by using these rules:

Label outgoing edges from nodes
Label nodes from incoming edges
Method: Simulate \land and \lor with $+$ and \times.

- $a \land b \rightarrow a \times b = ab$
- $\overline{a} \rightarrow (1 - a)$
- $a \lor b \rightarrow a + b - ab$

Replace Boolean labeling with arithmetical labeling

Inductive rules:
- Start node labeled 1

Simulate \lor with $+$ because the BP is acyclic.

The execution path can enter a node at most one time.
Non-Boolean Labeling

Use the arithmetized interpretation of the BP’s computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Recall labeling rules:

Algorithm sketch for EQ_{ROBP}: “On input $\langle B_1, B_2 \rangle$
1. Pick a random non-Boolean input assignment.
2. Evaluate B_1 and B_2 on that assignment.
3. If B_1 and B_2 disagree then reject.
 If they agree then accept.”

More details and correctness proof to come.
First some algebra...
Let \(p(x) = a_0 x^d + a_1 x^{d-1} + a_2 x^{d-2} + \cdots + a_d \) be a polynomial. If \(z \) is some constant and \(p(z) = 0 \) call \(z \) a root of \(p \).

Polynomial Lemma: If \(p(x) \neq 0 \) is polynomial of degree \(\leq d \) then \(p \) has \(\leq d \) roots.
Proof by induction (see text).

Corollary 1: If \(p_1(x) \) and \(p_2(x) \) are both degree \(\leq d \) and \(p_1 \neq p_2 \) then \(p_1(z) = p_2(z) \) for \(\leq d \) values \(z \).
Proof: Let \(p = p_1 - p_2 \).

Above holds for any field \(\mathbb{F} \) (a field is a set with + and \(\times \) operations that have typical properties).
We will use a finite field \(\mathbb{F}_q \) with \(q \) elements where \(q \) is prime and +, \(\times \) operate mod \(q \).

Corollary 2: If \(p(x) \neq 0 \) has degree \(\leq d \) and we pick a random \(r \in \mathbb{F}_q \), then \(\Pr[p(r) = 0] \leq d/q \).
Proof: There are at most \(d \) roots out of \(q \) possibilities.

Theorem (Schwartz-Zippel): If \(p(x_1, \ldots, x_m) \neq 0 \) has degree \(\leq d \) in each \(x_i \) and we pick random \(r_1, \ldots, r_m \in \mathbb{F}_q \) then \(\Pr[p(r_1, \ldots, r_m) = 0] \leq md/q \)
Proof by induction (see text).
Symbolic Execution

Leave the x_i as variables and obtain an expression in the x_i for the output of the BP.

Recall labeling rules:

- $a (1 - x_i)$
- $a x_i$

Exponents ≤ 1 due to "read-once"
Assume read exactly once so that for each i, (x_i) or $(1 - x_i)$ appears in every row

Form of output:

$$
= (1 - x_1)(x_2)^\times (1 - x_3)(x_4) \cdots (1 - x_m) + (x_1)(x_2)(x_3)(1 - x_4) \cdots (x_m) + (x_1)(1 - x_2)(1 - x_3)(x_4) \cdots (x_m) + \cdots + (x_1)(x_2)(1 - x_3)(x_4) \cdots (x_m)
$$

Corresponds to the True rows in the truth table of the Boolean function.
Algorithm for $E_{\text{ROBP}} = \text{“On input } \langle B_1, B_2 \rangle \text{ [on variables } x_1, \ldots, x_m \rangle$

1. Find a prime $q \geq 3m$.
2. Pick a random non-Boolean input assignment $r = r_1, \ldots, r_m$ where each $r_i \in \mathbb{F}_q$.
3. Evaluate B_1 and B_2 on r by using arithmetization.
4. If B_1 and B_2 agree on r then accept.
 If they disagree then reject.”

Claim: (1) $B_1 \equiv B_2 \rightarrow \Pr [p_1 (r) = p_2 (r)] = 1$
(2) $B_1 \not\equiv B_2 \rightarrow \Pr [p_1 (r) = p_2 (r)] \leq \frac{1}{3}$

Proof (1): If $B_1 \equiv B_2$ then they agree on all Boolean inputs. Thus their functions have the same truth table. Thus their associated polynomials p_1 and p_2 are identical. Thus p_1 and p_2 always agree (even on non-Boolean inputs).

Proof (2): If $B_1 \not\equiv B_2$ then $p_1 \neq p_2$ so $p = p_1 - p_2 \neq 0$. From Schwartz-Zippel, $\Pr [p_1 (r) = p_2 (r)] \leq \frac{d m}{q} \leq \frac{m}{3m} = \frac{1}{3}$. (Note that $d = 1$.)

Check-in 24.2
If the BPs were not read-once, the polynomials might have exponents ≥ 1. Where would the proof fail?
(a) $B_1 \equiv B_2$ implies they agree on all Boolean inputs
(b) Agreeing on all Boolean inputs implies $p_1 = p_2$
(c) Having $p_1 = p_2$ implies p_1 and p_2 always agree

p_1 and p_2 each have the form:
$$
(1 - x_1) (x_2) (1 - x_3) (x_4) \ldots (1 - x_m) + (x_1) (x_2) (x_3) (1 - x_4) \ldots (x_m) + (x_1) (1 - x_2) (1 - x_3) (x_4) \ldots (x_m) + \ldots + (x_1) (x_2) (1 - x_3) (x_4) \ldots (x_m)
$$
Algorithm for EQ_{ROBP} = “On input $\langle B_1, B_2 \rangle$ [on variables x_1, \ldots, x_m]
1. Find a prime $q \geq 3m$.
2. Pick a random non-Boolean input assignment $r = r_1, \ldots, r_m$ where each $r_i \in \mathbb{F}_q$.
3. Evaluate B_1 and B_2 on r by using arithmetization.
4. If B_1 and B_2 agree on r then accept.
 If they disagree then reject.”

Claim: (1) $B_1 \equiv B_2 \rightarrow \Pr[p_1(r) = p_2(r)] = 1$
(2) $B_1 \not\equiv B_2 \rightarrow \Pr[p_1(r) = p_2(r)] \leq 1/3$

Proof (1): If $B_1 \equiv B_2$ then they agree on all Boolean inputs.
Thus their functions have the same truth table.
Thus their associated polynomials p_1 and p_2 are identical.
Thus p_1 and p_2 always agree (even on non-Boolean inputs).

Proof (2): If $B_1 \not\equiv B_2$ then $p_1 \neq p_2$ so $p = p_1 - p_2 \neq 0$.
From Schwartz-Zippel, $\Pr[p_1(r) = p_2(r)] \leq \frac{dm}{q} \leq \frac{m}{3m} = \frac{1}{3}$.
(Note that $d = 1$.)

Check-in 24.3
If p_1 and p_2 were exponentially large expressions, would that be a problem for the time complexity?
(a) Yes, but luckily they are polynomial in size.
(b) No, because we can evaluate them without writing them down.

p_1 and p_2 each have the form:

$\begin{align*}
(1 - x_1) & \quad (x_2) & \quad (1 - x_3) & \quad (x_4) & \quad \cdots & \quad (1 - x_m) \\
+ (x_1) & \quad (x_2) & \quad (x_3) & \quad (1 - x_4) & \quad \cdots & \quad (x_m) \\
+ (x_1) & \quad (1 - x_2) & \quad (1 - x_3) & \quad (x_4) & \quad \cdots & \quad (x_m) \\
\vdots & & & & & \\
+ (x_1) & \quad (x_2) & \quad (1 - x_3) & \quad (x_4) & \quad \cdots & \quad (x_m)
\end{align*}$

Check-in 24.3
Quick review of today

1. Simulated Read-once Branching Programs by polynomials
2. Gave probabilistic polynomial equality testing method
3. Showed $EQ_{ROBP} \in \text{BPP}$