Last time:
- Games and Quantifiers
- Generalized Geography is PSPACE-complete
- Logspace: L and NL

Today:
- Review $NL \subseteq P$
- Review $NL \subseteq SPACE(\log^2 n)$
- NL-completeness
- $NL = coNL$
Review: log space

Model: 2-tape TM with read-only input tape for defining sublinear space computation.

Defn:
- \(L = \text{SPACE}(\log n) \)
- \(NL = \text{NSPACE}(\log n) \)

Log space can represent a constant number of pointers into the input.

Examples

1. \(\{ww^R \mid w \in \Sigma^* \} \in L \)

2. \(PATH \in NL \)

 Nondeterministically select the nodes of a path connecting \(s \) to \(t \).

Work tape tracks the expanding locations that the input tape.

Input tape

Work tape

Input tape

doesn’t count towards space used

work tape

O(\log n)

input tape

abak(baaananaaabab), s = \ldots, t = \ldots

L = NL? Unsolved

NL
Review: $L \subseteq P$

Theorem: $L \subseteq P$

Proof: Say M decides A in space $O(\log n)$.

Defn: A configuration for M on w is (q, p_1, p_2, t) where q is a state, p_1 and p_2 are the tape head positions, and t is the work tape contents.

The number of such configurations is $|Q| \times n \times O(\log n) \times d^{O(\log n)} = O(n^k)$ for some k.

Therefore M runs in polynomial time.

Conclusion: $A \in P$
Theorem: \(\text{NL} \subseteq \text{SPACE}(\log^2 n) \)

Proof: Savitch’s theorem works for log space

Each recursion level stores 1 config = \(O(\log n) \) space.
Number of levels = \(\log t = O(\log n) \).
Total \(O(\log^2 n) \) space.
Theorem: \(\text{NL} \subseteq \text{P} \)

Proof: Say NTM \(M \) decides \(A \) in space \(O(\log n) \).

Defn: The configuration graph \(G_{M,w} \) for \(M \) on \(w \) has

- **nodes:** all configurations for \(M \) on \(w \)
- **edges:** edge from \(c_i \to c_j \) if \(c_i \) can yield \(c_j \) in 1 step.

Claim: \(M \) accepts \(w \) iff the configuration graph \(G_{M,w} \)
has a path from \(c_{\text{start}} \) to \(c_{\text{accept}} \)

Polynomial time algorithm \(T \) for \(A \):

\(T = \) “On input \(w \)
1. Construct \(G_{M,w} \). [polynomial size]
2. Accept if there is a path from \(c_{\text{start}} \) to \(c_{\text{accept}} \).
 Reject if not.”
NL-completeness

Check-in 20.1
If T is a log-space transducer that computes f, then for inputs w of length n, how long can $f(w)$ be?

(a) at most $O(\log n)$
(b) at most $O(n)$
(c) at most polynomial in n

(d) at most $2^{O(n)}$
(e) any length

Defn: A log-space transducer is a TM with three tapes:
1. read-only input tape of size n
2. read/write work tape of size $O(\log n)$
3. write-only output tape

A log-space transducer T computes a function $f: \Sigma^* \rightarrow \Sigma^*$ if T on input w halts with $f(w)$ on its output tape for all w. Say that f is computable in log-space.

Defn: A is log-space reducible to B ($A \leq_L B$) if $A \leq_m B$ by a reduction function that is computable in log-space.

Theorem: If $A \leq_L B$ and $B \in L$ then $A \in L$

Proof: TM for $A = "On input w"
1. Compute $f(w)$
2. Run decider for B on $f(w)$. Output same.”

BUT we don’t have space to store $f(w)$.
So, (re-)compute symbols of $f(w)$ as needed.
PATH is NL-complete

Theorem: PATH is NL-complete

Proof:

1) PATH ∈ NL ✓
2) For all A ∈ NL, A ≤L PATH

Let A ∈ NL be decided by NTM M in space $O(\log n)$.

[Modify M to erase work tape and move heads to left end upon accepting.]

Give a log-space reduction f mapping A to PATH.

$$f(w) = \langle G, s, t \rangle$$

$w \in A$ iff G has a path from s to t

Here is a log-space transducer T to compute f in log-space.

1. For all pairs c_i, c_j of configurations of M on w.
2. Output those pairs which are legal moves for M.
3. Output c_{start} and c_{accept}.

$$f(w) = \langle G_M, w = c_3, c_7, (c_6, c_{22}), \ldots \rangle (c_{\text{start}} = \cdots) (c_{\text{accept}} = \cdots)$$
Theorem: \(2SAT\) is NL-complete

Proof: 1) Show \(2SAT \in NL\) good exercise

2) Show \(PATH \leq_L 2SAT\)

Give log-space reduction \(f\) from \(PATH\) to \(2SAT\).

\[f(⟨G, s, t⟩) = ⟨\phi⟩\]

For each node \(u\) in \(G\) put a variable \(x_u\) in \(\phi\).

For each edge \((u, v)\) in \(G\), put a clause \((x_u \rightarrow x_v)\) in \(\phi\) [equivalent to \((\overline{x_u} \lor x_v)]\).

In addition put the clauses \((x_s \lor x_s)\) and \((x_t \rightarrow \overline{x_s})\) in \(\phi\).

Show \(G\) has an path from \(s\) to \(t\) iff \(\phi\) is unsatisfiable.

\((-\rightarrow)\) Follow implications to get a contradiction.

\((-\leftarrow)\) If \(G\) has no path from \(s\) to \(t\), then assign all \(x_u\) TRUE where \(u\) is reachable from \(s\), and all other variables FALSE. That gives a satisfying assignment to \(\phi\).

Straightforward to show \(f\) is computable in log-space.
Theorem (Immerman-Szelepcsényi): $NL = coNL$

Proof: Show $\overline{PATH} \in NL$

Defn: NTM M computes function $f : \Sigma^* \rightarrow \Sigma^*$ if for all w
1) All branches of M on w halt with $f(w)$ on the tape or reject.
2) Some branch of M on w does not reject.

Let $path(G, s, t) = \begin{cases}
YES, & \text{if } G \text{ has a path from } s \text{ to } t \\
NO, & \text{if not}
\end{cases}$

Let $R = R(G, s) = \{u | path(G, s, u) = YES\}$
Let $c = c(G, s) = |R|$

$R = \text{Reachable nodes}$
$c = \# \text{ reachable}$

Check-in 20.2
Consider the statements:
(1) $\overline{PATH} \in NL$, and
(2) Some NL-machine computes the $path$ function.

What implications can we prove easily?
(a) (1) \rightarrow (2) only
(b) (2) \rightarrow (1) only
(c) Both implications
(d) Neither implication
Theorem: If some NL-machine computes c, then some NL-machine computes path.

Proof: “On input $\langle G, s, t \rangle$

1. Compute c
2. $k \leftarrow 0$
3. For each node u
4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq m$.
 - If fail, then reject.
 - If $u = t$, then output YES, else set $k \leftarrow k + 1$.
 - (n) Skip u and continue.
5. If $k \neq c$ then reject.
6. Output NO.” [found all c reachable nodes and none were t]
Theorem: If some NL-machine computes \(c_d \), then some NL-machine computes \(path_d \).

Proof: “On input \(\langle G, s, t \rangle \)
1. Compute \(c_d \)
2. \(k \leftarrow 0 \)
3. For each node \(u \)
4. Nondeterministically go to (p) or (n)
 (p) Nondeterministically pick a path from \(s \) to \(u \) of length \(\leq d \).
 If fail, then reject.
 If \(u = t \), then output YES, else set \(k \leftarrow k + 1 \).
 (n) Skip \(u \) and continue.
5. If \(k \neq c_d \) then reject.
6. Output NO” [found all \(c_d \) reachable nodes and none were \(t \)]
Theorem: If some NL-machine computes c_d, then some NL-machine computes $path_{d+1}$.

Proof: “On input (G,s,t)

1. Compute c
2. $k \leftarrow 0$
3. For each node u
 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq d$.
 If fail, then reject.
 If u has an edge to t, then output YES, else set $k \leftarrow k + 1$.
 - (n) Skip u and continue.
6. Output NO.” [found all c_d reachable nodes and none had an edge to t]

Corollary: Some NL-machine computes c_{d+1} from c_d.

Check-in 20.3
Can we now show 2SAT is NL-complete?
(a) No.
(b) Yes.
Yes: $PATH \leq_L PATH$ & $PATH \leq_L 2SAT$
So $PATH \leq_L 2SAT$ thus $PATH \leq_L 2SAT$
Quick review of today

1. Log-space reducibility
2. $L = NL$? question
3. $PATH$ is NL-complete
4. $2SAT$ is NL-complete
5. $NL = coNL$