Last time:
- NP-completeness
- $3SAT \leq_p CLIQUE$
- $3SAT \leq_p HAMPATH$

Today:
- Cook-Levin Theorem: SAT is NP-complete
- $3SAT$ is NP-complete
Quick Review

Defn: B is **NP-complete** if

1) $B \in NP$

2) For all $A \in NP$, $A \leq_P B$

If B is NP-complete and $B \in P$ then $P = NP$.

Importance of NP-completeness

1) Evidence of computational intractability.

2) Gives a good candidate for proving $P \neq NP$.

To show some language C is NP-complete, show $3SAT \leq_P C$.

or some other previously shown NP-complete language

Check-in 16.1

The big sigma notation means summing over some set.

$$\sum_{1 \leq i \leq n} i = 1 + 2 + \cdots + n$$

The big AND (or OR) notation has a similar meaning.

For example, if $x = x_1 \cdots x_n$ and $y = y_1 \cdots y_n$ are two strings of length n, when does the following hold?

$$\left(\bigwedge_{1 \leq i \leq n} x_i = y_i \right) = \text{TRUE}$$

(a) Whenever x and y agree on some symbol.

(b) Whenever $x = y$.

Check-in 16.1
Theorem: \textit{SAT} is NP-complete

Proof: 1) \textit{SAT} \in \textit{NP} (done)

2) Show that for each $A \in \textit{NP}$ we have $A \leq_{p} \textit{SAT}$:

Let $A \in \textit{NP}$ be decided by NTM M in time n^{k}.

Give a polynomial-time reduction f mapping A to \textit{SAT}.

\[f: \Sigma^{*} \rightarrow \text{formulas} \]
\[f(w) = \langle \phi_{M,w} \rangle \]
\[w \in A \text{ iff } \phi_{M,w} \text{ is satisfiable} \]

Idea: $\phi_{M,w}$ simulates M on w. Design $\phi_{M,w}$ to “say” M accepts w.

Satisfying assignment to $\phi_{M,w}$ is a computation history for M on w.
Defn: An \textbf{(accepting) tableau} for NTM M on w is an $n^k \times n^k$ table representing an \textbf{computation history} for M on w on an accepting branch of the nondeterministic computation.

Construct $\phi_{M,w}$ to “say” M accepts w.

$\phi_{M,w}$ “says” a tableau for M on w exists.

$$\phi_{M,w} = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{move}} \land \phi_{\text{accept}}$$
Constructing $\phi_{M,w}$: ϕ_{cell}

The variables of $\phi_{M,w}$ are $x_{i,j,\sigma}$ for $1 \leq i,j \leq n^k$ and $\sigma \in \Gamma \cup Q$.

$x_{i,j,\sigma} = \text{TRUE}$ means cell i,j contains σ.

<table>
<thead>
<tr>
<th>q_0</th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>...</th>
<th>w_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>q_7</td>
<td>w_2</td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>q_{accept}</td>
</tr>
</tbody>
</table>

Cell i,j can contain any symbol in $\Gamma \cup Q$.

Check-in 16.2
How many variables does $\phi_{M,w}$ have?
Recall that $n = |w|$.

(a) $O(n)$
(b) $O(n^2)$
(c) $O(n^k)$
(d) $O(n^{2k})$
Constructing $\phi_{M,w}$: ϕ_{start} and ϕ_{accept}

$\phi_{M,w}$ “says” a tableau for M on w exists.

$\phi_{M,w} = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{move}} \land \phi_{\text{accept}}$

ϕ_{cell} done ✓

$\phi_{\text{start}} = $

$\phi_{\text{accept}} = \bigvee_{1 \leq j \leq n^k} x_{n^k,j,q,\text{accept}}$
Constructing $\phi_{M,w}: \phi_{move}$

$\phi_{M,w}$ "says" a tableau for M on w exists.

$\phi_{M,w} = \phi_{cell} \land \phi_{start} \land \phi_{move} \land \phi_{accept}$

$\phi_{move} = \bigwedge_{1<i,j<n} \left(\bigvee_{\text{Legal}} \left(x_{i,j-1,R} \land x_{i,j,S} \land x_{i,j+1,T} \land x_{i+1,j-1,V} \land x_{i+1,j,Y} \land x_{i+1,j+1,Z} \right) \right)$

Says that the neighborhood at i,j is legal
Conclusion: \(SAT \) is NP-complete

Summary:
For \(A \in \text{NP} \), decided by NTM \(M \), we gave a reduction \(f \) from \(A \) to \(SAT \):

\[
f: \Sigma^* \rightarrow \text{formulas}
\]

\[
f(w) = \langle \phi_{M,w} \rangle
\]

\(w \in A \) iff \(\phi_{M,w} \) is satisfiable.

\[
\phi_{M,w} = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{move}} \land \phi_{\text{accept}}
\]

The size of \(\phi_{M,w} \) is roughly the size of the tableau for \(M \) on \(w \), so size is \(O(n^k \times n^k) = O(n^{2k}) \).

Therefore \(f \) is computable in polynomial time.
Theorem: 3SAT is NP-complete

Proof: Show SAT \leq_P 3SAT

Give reduction \(f \) converting formula \(\phi \) to 3CNF formula \(\phi' \), preserving satisfiability.
(Note: \(\phi \) and \(\phi' \) are not logically equivalent)

Example: Say \(\phi = ((a \land b) \lor c) \land (\overline{a} \lor b) \)

Tree structure for \(\phi \):

Logical equivalence: \((A \rightarrow B) \) and \((A \lor B) \)
\((A \land B) \) and \((A \lor B) \)

\(\phi' = ((a \land b) \rightarrow z_1) \land ((\overline{a} \land b) \rightarrow \overline{z}_1) \land ((a \land \overline{b}) \rightarrow \overline{z}_1) \land ((\overline{a} \land \overline{b}) \rightarrow \overline{z}_1) \)
\(\land ((z_1 \land c) \rightarrow z_2) \land ((\overline{z}_1 \land c) \rightarrow \overline{z}_2) \land ((z_1 \land \overline{c}) \rightarrow z_2) \land ((\overline{z}_1 \land \overline{c}) \rightarrow \overline{z}_2) \)
\(\land (z_4) \)

Check-in 16.3

If \(\phi \) has \(k \) operations (\(\land \) and \(\lor \)), how many clauses has \(\phi' \)?

(a) \(k + 1 \) \hspace{1cm} (c) \(k^2 \)

(b) \(4k + 1 \) \hspace{1cm} (d) \(2k^2 \)
Quick review of today

1. \textit{SAT} is NP-complete
2. \textbf{3SAT} is NP-complete