Last time:
- $\text{TIME}(t(n))$
- $P = \bigcup_k \text{TIME}(n^k)$
- $\text{PATH} \in P$

Today:
- $\text{NTIME}(t(n))$
- NP
- P vs NP problem
- Dynamic Programming
- Polynomial-time reducibility

Posted:
- Midterm & solutions, Problem Set 3 solutions, Problem Set 4
Quick Review

Defn: \(\text{TIME}(t(n)) = \{B| \text{some deterministic 1-tape TM } M \text{ decides } B \text{ and } M \text{ runs in time } O(t(n))\} \)

Defn: \(P = \bigcup_k \text{TIME}(n^k) = \text{polynomial time decidable languages} \)

\(\text{PATH} = \{\langle G, s, t \rangle| G \text{ is a directed graph with a path from } s \text{ to } t \} \)

Theorem: \(\text{PATH} \in P \)

\(\text{HAMPATH} = \{\langle G, s, t \rangle| G \text{ is a directed graph with a path from } s \text{ to } t \text{ that goes through every node of } G \} \)

\(\text{HAMPATH} \in P \)?

[connection to factoring]
In a nondeterministic TM (NTM) decider, all branches halt on all inputs.

Defn: An NTM runs in time $t(n)$ if all branches halt within $t(n)$ steps on all inputs of length n.

Defn: $\text{NTIME}(t(n)) = \{B | \text{some 1-tape NTM decides } B$ and runs in time $O(t(n)) \}$

Defn: $\text{NP} = \bigcup_k \text{NTIME}(n^k)$

- = nondeterministic polynomial time decidable languages
- Invariant for all reasonable nondeterministic models
- Corresponds roughly to easily verifiable problems
Theorem: \(\text{HAMPATH} \in \text{NP} \)

Proof:
"On input \(\langle G, s, t \rangle \) (Say \(G \) has \(m \) nodes.)

1. Nondeterministically write a sequence \(\langle v_1, v_2, \ldots, v_m \rangle \) of \(m \) nodes.

2. \textbf{Accept} if \(v_1 = s \) \(\quad v_m = t \)
 each \((v_i, v_{i+1}) \) is an edge and no \(v_i \) repeats.

3. \textbf{Reject} if any condition fails."
\textbf{COMPOSITES} \in \textbf{NP}

\textbf{Defn:} \(\text{COMPOSITES} = \{ x | x \text{ is not prime and } x \text{ is written in binary} \} = \{ x | x = yz \text{ for integers } y, z > 1, \ x \text{ in binary} \} \)

\textbf{Theorem:} \(\text{COMPOSITES} \in \text{NP} \)

\textbf{Proof:} “On input } x
1. Nondeterministically write } y \text{ where } 1 < y < x.
2. \text{Accept if } y \text{ divides } x \text{ with remainder } 0.
\text{Reject if not.”}

\textbf{Note:} Using base 10 instead of base 2 wouldn’t matter because can convert in polynomial time.

\textbf{Bad encoding:} write number } k \text{ in unary: } 1^k = \underbrace{111 \cdots 1}_{k}, \text{ exponentially longer.}

\textbf{Theorem (2002):} \(\text{COMPOSITES} \in \text{P} \)
We won’t cover this proof.
Intuition for P and NP

NP = All languages where can verify membership quickly
P = All languages where can test membership quickly

Examples of quickly verifying membership:
- HAMPATH: Give the Hamiltonian path.
- COMPOSITES: Give the factor.
The Hamiltonian path and the factor are called short certificates of membership.

Check-in 14.1
Let \(\overline{HAMPATH} \) be the complement of \(HAMPATH \).
So \((G, s, t) \in HAMPATH \) if \(G \) does not have a Hamiltonian path from \(s \) to \(t \).
Is \(HAMPATH \in NP? \)
(a) Yes, we can invert the accept/reject output of the NTM for \(HAMPATH \).
(b) No, we cannot give a short certificate for a graph not to have a Hamiltonian path.
(c) I don’t know.
Recall A_{CFG}

Recall: $A_{\text{CFG}} = \{ \langle G, w \rangle | \ G \text{ is a CFG and } w \in L(G) \}$

Theorem: A_{CFG} is decidable

Proof:

$D_{A-\text{CFG}} =$ “On input $\langle G, w \rangle$"

1. Convert G into Chomsky Normal Form.
2. Try all derivations of length $2|w| - 1$.
3. Accept if any generate w. Reject if not.

Chomsky Normal Form (CNF):

- $A \rightarrow BC$
- $B \rightarrow b$

Let’s always assume G is in CNF.

Theorem: $A_{\text{CFG}} \in \text{NP}$

Proof: “On input $\langle G, w \rangle$"

1. Nondeterministically pick some derivation of length $2|w| - 1$.
2. Accept if it generates w. Reject if not.
Attempt to show $A_{CFG} \in P$

Theorem: $A_{CFG} \in P$

Proof attempt:
Recursive algorithm C tests if G generates w, starting at any specified variable R.

$C = \text{“On input } \langle G, w, R \rangle$

1. For each way to divide $w = xy$ and for each rule $R \rightarrow ST$
2. Use C to test $\langle G, x, S \rangle$ and $\langle G, y, T \rangle$
3. Accept if both accept
4. Reject if none of the above accepted.”

Then decide A_{CFG} by starting from G’s start variable.

C is a correct algorithm, but it takes non-polynomial time.
(Each recursion makes $O(n)$ calls and depth is roughly $\log n$.)

Fix: Use recursion + memory called *Dynamic Programming (DP)*

Observation: String w of length n has $O(n^2)$ substrings $w_i \cdots w_j$ therefore there are only $O(n^2)$ possible sub-problems $\langle G, x, S \rangle$ to solve.
DP shows $A_{CFG} \in P$

Theorem: $A_{CFG} \in P$

Proof: Use DP (Dynamic Programming) = recursion + memory.

$D = \text{"On input } \langle G, w, R \rangle \text{ \"memoization\"}

1. For each way to divide $w = xy$ and for each rule $R \rightarrow ST$
2. Use D to test $\langle G, x, S \rangle$ and $\langle G, y, T \rangle$
3. *Accept* if both accept
4. *Reject* if none of the above accepted.”

Then decide A_{CFG} by starting from G’s start variable.

Total number of calls is $O(n^2)$ so time used is polynomial.

Alternately, solve all smaller sub-problems first: “bottom up”

Check-in 14.2

Suppose B is a CFL. Does that imply that $B \in P$?

(a) Yes
(b) No.
Theorem: \(A_{CFG} \in P \)

Proof: Use bottom-up DP.

\(D = \) "On input \(\langle G, w \rangle \)

1. For each \(w_i \) and variable \(R \)
 - Solve \(\langle G, w_i, R \rangle \) by checking if \(R \rightarrow w_i \) is a rule.

2. For \(k = 2, ..., n \) and each substring \(u \) of \(w \) where \(|u| = k \) and variable \(R \)
 - Solve \(\langle G, u, R \rangle \) by checking for each \(R \rightarrow ST \) and each division \(u = xy \)
 if both \(\langle G, x, S \rangle \) and \(\langle G, y, T \rangle \) were positive.

3. **Accept** if \(\langle G, w, S \rangle \) is positive where \(S \) is the original start variable.
4. **Reject** if not."

Total number of calls is \(O(n^2) \) so time used is polynomial.

Often, bottom-up DP is shown as filling out a table.
Satisfiability Problem

Defn: A *Boolean formula* \(\phi \) has Boolean variables (TRUE/FALSE values) and Boolean operations AND (\(\land \)), OR (\(\lor \)), and NOT (\(\neg \)).

Defn: \(\phi \) is *satisfiable* if \(\phi \) evaluates to TRUE for some assignment to its variables. Sometimes we use 1 for True and 0 for False.

Example: Let \(\phi = (x \lor y) \land (\neg x \lor \neg y) \) (Notation: \(\neg x \) means \(\neg x \))

Then \(\phi \) is satisfiable (\(x=1, y=0 \))

Defn: \(SAT = \{ \phi | \phi \) is a satisfiable Boolean formula\}

Theorem (Cook, Levin 1971): \(SAT \in P \rightarrow P = NP \)

Proof method: polynomial time (mapping) reducibility

Check-in 14.3

Is \(SAT \in NP? \)

(a) Yes.

(b) No.

(c) I don’t know.

(d) No one knows.
Defn: A is polynomial time reducible to B \((A \leq_P B)\) if \(A \leq_m B\) by a reduction function that is computable in polynomial time.

Theorem: If \(A \leq_P B\) and \(B \in P\) then \(A \in P\).

Idea to show \(SAT \in P \rightarrow P = NP\)

Analogy with \(A_{TM}\)
Quick review of today

1. $\text{NTIME}(t(n))$ and NP
2. HAMPATH and $\text{COMPOSITES} \in \text{NP}$
3. P versus NP question
4. $A_{\text{CFG}} \in \text{P}$ via Dynamic Programming
5. The Satisfiability Problem SAT
6. Polynomial time reducibility