18.404/6.840 Intro to the Theory of Computation

Instructor: Mike Sipser
Office Hours 4:00 – 5:30 Tuesdays

TAs: Office Hours TBD
- Fadi Atieh, Damian Barabonkov,
- Alex Dimitrakakis, Thomas Xiong,
- Abbas Zeitoun, and Emily Liu

Recitations start Friday
- Optional unless you need them!
- Hourly 10-2pm, online. On Sept 11, noon and 2pm → in-person

Homework, Exams, Quizzes
- See Course Information on homepage math.mit.edu/18.404
- First Pset due Sept 10. Posted on homepage
Our TAs

Alex

Thomas

Fadi

Abbas

Damian

Emily
Computability Theory 1930s – 1950s

- What is computable... or not?
- Examples:
 - program verification, mathematical truth
- Models of Computation:
 - Finite automata, Turing machines, ...

Complexity Theory 1960s – present

- What is computable in practice?
- Example: factoring problem
- P versus NP problem
- Measures of complexity: Time and Space
- Models: Probabilistic and Interactive computation
Course Mechanics

Zoom Lectures
- Live and Interactive via Chat
- Live lectures are recorded for later viewing

Zoom Recitations starting this Friday
- Not recorded; notes will be posted
- Two convert to in-person on Sept 11
- Review concepts and more examples
- Optional unless you are having difficulty
 Participation can raise low grades
- Attend any recitation

Homework bi-weekly – 35%
- More information to follow

Midterm (15%) and Final exam (25%)
- Open book and notes

Check-in quizzes for credit – 25%
- Distinct Live and Recorded versions
- Complete either one for credit within 48 hours
- Initially ungraded; full credit for participation
Course Expectations

Prerequisites
Prior substantial experience and comfort with mathematical concepts, theorems, and proofs. Creativity will be needed for psets and exams.

Collaboration policy on homework
- Allowed. But try problems yourself first.
- Write up your own solutions.
- No bibles or online materials.
Role of Theory in Computer Science

1. Applications
2. Basic Research
3. Connections to other fields
4. What is the nature of computation?
Let’s begin: Finite Automata

Input: finite string
Output: Accept or Reject

Computation process: Begin at start state, read input symbols, follow corresponding transitions, Accept if end with accept state, Reject if not.

Examples: 01101 → Accept
 00101 → Reject

Say that A is the language of M_1 and that M_1 recognizes A and that $A = L(M_1)$.

M_1 accepts exactly those strings in A where $A = \{ w | w \text{ contains substring 11} \}$.

States: q_1, q_2, q_3
Transitions:
Start state:
Accept states:

Check-in 1.2
Finite Automata – Formal Definition

Defn: A finite automaton M is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$

- Q finite set of states
- Σ finite set of alphabet symbols
- δ transition function $\delta: Q \times \Sigma \rightarrow Q$
- q_0 start state
- F set of accept states

Example:

$$M_1 = (Q, \Sigma, \delta, q_1, F)$$

$$Q = \{q_1, q_2, q_3\}$$

$$\Sigma = \{0, 1\}$$

$$F = \{q_3\}$$

Transition Table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>q_1</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_2</td>
<td>q_3</td>
</tr>
<tr>
<td>q_3</td>
<td>q_3</td>
<td>q_3</td>
</tr>
</tbody>
</table>
Strings and languages

- A string is a finite sequence of symbols in Σ
- A language is a set of strings (finite or infinite)
- The empty string ϵ is the string of length 0
- The empty language \emptyset is the set with no strings

Defn: M accepts string $w = w_1w_2 \ldots w_n$ each $w_i \in \Sigma$ if there is a sequence of states $r_0, r_1, r_2, \ldots, r_n \in Q$

where:
- $r_0 = q_0$
- $r_i = \delta(r_{i-1}, w_i)$ for $1 \leq i \leq n$
- $r_n \in F$

Recognizing languages

- $L(M) = \{w \mid M$ accepts $w\}$
- $L(M)$ is the language of M
- M recognizes $L(M)$

Defn: A language is regular if some finite automaton recognizes it.
Regular Languages – Examples

Let $L(M_1) = \{w \mid w \text{ contains substring } 11\} = A$

Therefore A is regular

More examples:

Let $B = \{w \mid w \text{ has an even number of } 1\text{s}\}$

B is regular (make automaton for practice).

Let $C = \{w \mid w \text{ has equal numbers of } 0\text{s and } 1\text{s}\}$

C is not regular (we will prove).

Goal: Understand the regular languages
Regular Expressions

Regular operations. Let A, B be languages:

- **Union:**
 \[A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \]

- **Concatenation:**
 \[A \circ B = \{ xy \mid x \in A \text{ and } y \in B \} = AB \]

- **Star:**
 \[A^* = \{ x_1 \ldots x_k \mid \text{each } x_i \in A \text{ for } k \geq 0 \} \]
 Note: $\varepsilon \in A^*$ always

Example. Let $A = \{ \text{good, bad} \}$ and $B = \{ \text{boy, girl} \}$.

- $A \cup B = \{ \text{good, bad, boy, girl} \}$
- $A \circ B = AB = \{ \text{goodboy, goodgirl, badboy, badgirl} \}$
- $A^* = \{ \varepsilon, \text{good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, ...} \}$

Regular expressions

- Built from Σ, members $\Sigma, \emptyset, \varepsilon$ [Atomic]
- By using \cup, \circ, \star [Composite]

Examples:

- $(0 \cup 1)^* = \Sigma^*$ gives all strings over Σ
- $\Sigma^* 1$ gives all strings that end with 1
- $\Sigma^* 11\Sigma^* = \text{all strings that contain } 11 = L(M_1)$

Goal: Show finite automata equivalent to regular expressions
Theorem: If A_1, A_2 are regular languages, so is $A_1 \cup A_2$ (closure under \cup)

Proof: Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1

$M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q_0, F)$ recognizing $A_1 \cup A_2$

M should accept input w if either M_1 or M_2 accept w.

Mini-quiz 3

In the proof, if M_1 and M_2 are finite automata where M_1 has k_1 states and M_2 has k_2 states

Then how many states does M have?

(a) $k_1 + k_2$

(b) $(k_1)^2 + (k_2)^2$

(c) $k_1 \times k_2$

Components of M:

$q = Q_1 \times Q_2$

$= \{(q_1, q_2) | q_1 \in Q_1 \text{ and } q_2 \in Q_2\}$

$l_0 = (q_1, q_2)$

$i((q, r), a) = (\delta_1(q, a), \delta_2(r, a))$

$r^c = F_1 \times F_2 \text{ NO! [gives intersection]}$

$F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$
Closure Properties continued

Theorem: If A_1, A_2 are regular languages, so is A_1A_2 (closure under \circ)

Proof: Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1

$M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q_0, F)$ recognizing A_1A_2

M should accept input w if $w = xy$ where M_1 accepts x and M_2 accepts y.

Doesn’t work: Where to split w?
Quick review of today

1. Introduction, outline, mechanics, expectations
2. Finite Automata, formal definition, regular languages
3. Regular Operations and Regular Expressions
4. Proved: Class of regular languages is closed under \cup
5. Started: Closure under \circ, to be continued…