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Figure 3.2.3: Area(R) = gridpoints € R|

between the expected number of points in the region and the actual number of
points in the region. The expected number of points in any region the area of
the region. Thus, we get Definition 3.2.3:

Definition 3.2.3: The discrepancy A(R; of a region 2 is the absolute value of
the d:ference between the number of points of X in the region and the area of
the region, i.e,

A(R) =

I XN R — Area(R)i.

For rectilinear regions whose boundaries are on a grid between the grid points
the area of the region is equal to the number of grid points in the region {See

Figure 3.2.3). It follows that for these regions, the discrepancy is the difference

o
o

etween the number of points of X and the number of grid points in the region.

We can show that to prove Theorem 3.2.2 it is sufficient to prove the fol-
lowing: with high probability, given peoints distributed as above, every simple
ciosed curve R whose boundary is on a grid with grid length ©{iog®**n) has

I

discrzpancy at most cPer(R)log**n for =ome fixed constant ¢. Here, Per(R) is

(']

the leng:h of the perimeter of R. We prove this theorem by approximating the
simple ciosed curve R by a sequence of O{logn) regions, and showing that the
difference of the discrepancies of successive approximations is small.
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We divide the proof of the theorem into four sections. First, we prove
several lemmas that we will need in the proof. Second, we prove that the dual
theorem stated above implies the theocrem. Last, we prove this dual theorem.
We divide this proof into two parts: 2 deterministic part and a probabilistic
part. The deterministic part defines a series of approximations of a region R.

The probabilistic part uses these to show that the discrepancy A(R) is small.

3.2.3. Lemmas and Notation

In this section we will define notation that we will need for the proof of
Thecrem 3.2.2, and prove several lemmas that we will need in that theorem.
Most of these definitions and lemmas are geometric. They deal with figures in
the plane, mainly points, lines, grids, regions, paths and curves. The lemmas
are mostly fairly easy to prove; some are trivial.

We define the symmetric difference of two regions in the plane A and B to
be the set of points in exactly one of the regions. We use the notation |A — B!
for the symmetric difference of two 1egions. If B C A, then we will use A — B
to be the region -antaining every point in A that is not in B. Otherwise, A — B
will dencte the signed difference of A and B; that is, every point in A and not
in B is considered positive, and every point in B and not in A is considered
negative. We will need the to define the discrepancy of a signed difference. We

define the discrepancy of A — B as
A(A— B) = Area(A) — Area(B) — X1 A|+|X nB||.
We now have
A(4) - A(B) £ A(A-B).

We now prove certain lemmas that will be necessary to the proof of maxi-
mum ecdge length matching. Most of these are easy. They deal with geometric

constructs and grids.
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Figure 3.2.4: Expanding the circle to include squares around all the grid points.

Figure 3.2.5: Moving a circle distance dp.

Lemma 3.2.4: Any circle of radius r on a unit grid can only contain =(r +

v/2/2)? grid points.

Proof: Expand the circle by \/5/2 to obtain a new circle. Every grid point in
the old circle is contained in a unit square entirely within the new circle. (See
Figure 3.2.4) Thus, the number of grid points in the old circle is at most the

area of the new circle, or 7{r +/2/2)%. |

Lermnma 3.2.5: Let P be a path of length p. Then, if R is the region containing
everything within distan-e r of a point on the path, the area of R is at most

2pr — 7rl,

Proof: We can obtain R by moving a circie with radius r so that its center
follows the path P. The area covered by the circle is the region R. If we move
the circle a distance dp, then the additional area covered by the circle is 2rdp.
(See Figure 3.2.5) We start with area nr?, so after moving the circle distance p,

we have area at most nr? + 2pr. 1
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Figure 3.2.6: The triangle UVW.

Lemma 3.2.8: Consider the edge UV in Figure 3.2.6. The locus of points W
determined by k = 2{u?+v?)—w? is a circle of radius vk around the midpoint X

of UV. Here, u = |[WV|, v = [WU|, and w = |UV|,

Proof: Let U = (z4,%.), V = (2v,¥,), and W = (z,y). Then we have the

equation
k=2((z-z)?+ (V- w) + (- 2.) + (v = %)?) = (Zu — 2,)* — (v — %)%
This equation reduces to

k=4(z? +y*) — dz(zy + 2,) — (¥ + %) + (zu + 2.)* + (vu + 1)%,

or

k ( zu+zu\’ ( yu+yu)2
-=lz- ' - .
4 2 ) T\ 2

This is the equation of a circle with center (Zs}2e ¥ut¥e) and radius \/k/4, as

claimed. 1

Lemma 3.2.7: In a triangle with sides of lengths a, b and ¢,
2(a® + b%) > %

Proof: By the triangle inequality, ¢ + b > ¢. Squaring both sides, we get
a®+2ab+b* > ¢?, Now, adding the inequality (a —b)? > 0, we obtain 2a® +2b? >
I |



3.2.4. The Dual Problem

In this section, we show that the following theorem implies theorem 3.2.2.

Theorem 3.2.8: Suppose X is a set of n points uniformly distributed in the
v/ x /7 square. Let G, be a grid of squares with edge length ©(log®n). Then

—(logn)'/3-

there is a ccnstant ¢ such that with probability at least 1 —n * for any

€ > 0 there does not exist a simple closed curve R whose boundary follows G,,

and which has discrepancy A(R) > cPer(R)log**n.

To be specific, what we will do is show that if for an arrangement of the points
such that the discrepancy of every simple closed curve R is O(log**n)Per(R),
the optimal matching has edges of length O(logs/ *n). We will need Hall’s The-
orem.

Hall’s Theorem: In a bipartite graph G between two sets of points P* and
P~, the number of unmatched + points in a maximal matching is

max |4] — |E(4)],

where R(A) is the set of vertices of P~ that are adjacent to the vertices of A.

We use this to prove the following:

Lemma 3.2.9: Suppose that for a set X of n points in the /n x \/n square
all regions R made of squares from some grid of size ¢ satisfy A(R) < cPer(R).
Then there is a matching between points of X and grid points which has maxi-

mum edge length d, where d = 16¢.

By Hall’s Theorem, if for every set A of z points of X, there are z grid points
within distance d of them, then there is a2 matching with all edge lengths less
than d.

We first construct in the square a grid of smaller squares with sides of size

4 = 4¢, so that there are 4,/n/d grid squares on a side of the /7 x \/n square.
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Figure 3.2.7: Forming R' by adding triangles.

Now, consider any subset A C X. Let the region R consist of all grid squares
containing a point from A. Form a slightly larger region R' by adding an isosceles
right triangle with hypotenuse 4¢ on each of the sides of the squares (See Figure
3.2.7). All the points in this larger region R’ are within distance d of a point
of A. If we can prove that the number of grid points i.. R' is larger than the

number of points of X in the region R, then we are done.

We show that the number of grid points in R’ is larger than the number of

points of X in R. This follows from the inequalities

lgridpoints in R'| — | XN R| > Area(R') - |XNR|
> Area(R' — R) — A(R)
> ZLPer(R) — cPer(R)
> 0.

The number of grid points in R’ will be larger than the area of R' since
R' is a region which is a ﬁnion of right isosceles triangles with grid points at
their right angle, and this is true for any such region (See figure 3.2.8). The next
inequality holds since A(R) = |Area(R)—|X NR||. For every grid edge of length
d/4 on the perimeter of our region, we have an isosceles right triangle in R’ — R

with area d?/64, so Area(R' — R) = £ Per(R). Finally, from the hypothesis of
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Figure 3.2.8: Area(R') < |gridpoints € R'|.
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Figure 3.2.9: Decomposing an arbitrary region into simply ccnnected regions.

our theorem, we have A(R) < cPer(R). This gives the last inequality.

Lemma 3.2.10: Suppose that every simply connected region R bounded by
grid lines satisfies A(R) < cPer(R), where ¢ is some constant. Then every

region B bounded by grid lines satisfies A(R) < cPer(R).

Proof: We decompose an arbitrary region R composed of grid squares into
a sum and difference of simply connected regions. (See Figure 3.2.9) We do
this in the obvious way: the perimeter of the region decomposes into simple
closed curves, each of which determines the simply connected region inside it.
By adding and subtracting these regions, we obtain our original region. Since
when we add all the regions, we add their perimeter, we have that the perimeter

is the sum of the perimeters of the regions. The discrepancy of the total region
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is less than or equal to the sum of the discrepancies of the component regions.

Since each of the component regions has discrepancy bounded by ¢ - Per(R;),

the orig'nal region will also have discrepancy bounded by ¢ - Per(R). §

It is easy to see that Lemma 3.2.10, Lemma 3.2.9 and Theorem 3.2.8 imply
Theorem 3.2.2. By Theorem 3.2.2, with high probability every simply con-
nected region K with boundary on a grid G,, with edge length (9(log3/4 n)
has discrepancy at most ¢log®/4 nPer(R) for some constant ¢. By Lemma
3.2.10, this implies that for all regions R whose boundaries follow G,,, A{R) <
clog®*nPer(R). By Lemma 3.2.9, this implies that there is a matching with
maximum edge length @(1033/4 n). Thus, to prove Theorem 3.2.2, we must now

prove Theorem 3.2.8

3.2.5. Deterministic Part of Proof

We now prove the theorem:

Theorem 3.2.8: Suppose X is a set of n points uniformly distributed in the
V1 X \/n square. Let G, be a grid of squares with edge length ©(log**n). Then

~(togn)*2~ for any

there is a constant ¢ such that with probability at least 1 — n
€ > 0 there does not exist a simple closed curve R whose boundary follows G,,

and which has discrepancy A(R) > cPer(R)log* *n.

We will divide the proof of this theorem into two sections, a deterministic
section and a probabilistic section. In the deterministic section, we show that
we can produce a sequence of approximations R; to the region R that satisfy
certain conditions. In the probabilistic section, we use these approximations to
bound the discrepancy of F; by bounding the difference in the discrepancies of
R; and R;.,;. Showing that we can find these approximations R; is the hardest
part of the proof. The conditions on these approximations R; are somewhat

technicai. They are stated in the following lemma.
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Figure 3.2.10: Making the perimeter a power of 2.

Lemma 3.2.11: Let G be a grid with edge length G)(logs/‘ n). Then there is
a constant C and a scheme for approximating all connected regions R with
boundary on G satisfying the following: Any connected region R with boundary
on G with perimeter p in the \/n x y/n square is approximated by regions
Ri,Ry,---, R, where m < logp, such that there are numbers s;,82,---,8mn

with 27, s; < C satisfying
1. The area of the difference between successive approximations satisfies
Area(Ri4; — R;) < 27%p2.
2. The number of possible sequences R;, R;,- - -, R;;+1, given a bound s on s;,

and not given R, is at most

92"t log(s; log n)

Let R be a simple closed curve with boundary following G and let p be the
perimeter of R. We can assume without loss of generality that p is a power of
2. Given a region R, we can add to its boundary with extensions of zero area
to increase its perimeter to a power of 2. (See Figure 3.2.10.) This addition
changes the boundary of the region, but leaves the region itself unchanged. The
approximations we derive from the new boundary will thus approximate the

same region R.

To produce the sequence of approximations R; we will use two different se-
quences of polygons. The first sequence will have vertices lying on the boundary

of R. We will call the 1th polygon of this kind 4;. These polygons A, will then
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Figure 3.2.11: Obtaining A, from the boundary of R.

be approximated further by polygons B; with vertices on a grid G;. If B; is a
simple closed curve, then R; is its interior. Although we begin with a simple
closed curve, neither the A; nor the B; approximatio: ; will necessw.ily be simple
closed curves, which will cause further problems, forcing us to define a region
“enclosed” by the polygon B;. This “enclosed” region will be R;. These regions

R; will not necessarily be connected, even though R is connected.

To obtain the approximation A;, we mark 2' points at equal distances along
the perimeter of the curve. (See Figure 3.2.11) We call these points a;q, a1, ...,
a; 2i_y. The starting point ajp = ao will be the same for all A;. We then join
these points in order by edges. Half the vertices of A;,, are also vertices of A,
specifically, a;; = ai4+1,2;. We let the length of the edge between a;;_; and q;; be
&y

The polygon B; is obtained by approximating A; using points on a grid G;.
We let the jth vertex b,; of B; be the nearest grid point to the jth vertex a;;
of A; [See Figure 3.2.12). If several grid points are equidistant to some vertex,
we need to break the tie. Any consistent rule for breaking ties can be used.
Alternatively, we can perturb the points so that there are no ties. We will

assume that there are no ties.

The grid G; will have points spaced evenly at distance ©(p/(2'y/logn)). The
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Figure 3.2.13: The grids G,,; and G;.

edge length of G;;; will be half that of G;. The grid G;;, is a refinement of G;,
so a fourth of the points of G4, are also points of G;. (See Figure 3.2.13.) We
denote the edge length of G; by g; = ¢1/2°"'. We will want g; to be a power of
2, so we choose g; to be the smallest power of 2 larger than p/(2'/Togn).

Thus, to obtain A;, we do the following:

1. From some fixed point aq along the perimeter, mark every point at dis-

tance p/2' along the curve.
2. Connect these points with straight segments to produce a polygon.
To produce B;, we add step 1% between steps 1 and 2:

1. From some fixed point ag along the perimeter, mark every point at dis-
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Figure 3.2.14: Obtaining R; from B;: R; is shaded.

tance p/2' along the curve.

. Approximate these 2' points by points of the grid G;.

-

2. Connect these points with straight segments to produce a polygon.

We have now produced a polygon B;. If this polygon is a simple closed
curve, then the area inside it will be our 1th approximation R; to the regicn we
wish to approximate. If it is not, we must do scme more work. We wish to avoid
double counting areas. If an area is enclosed by the polygon twice or more (i.e.,
has winding number > 2), we still wish to count each point inside it at most
once when calculating the discrepancy. We also do not want to count any point
with winding number 0. We can do this in the following manner: If the winding
number of a point is positive with respect to B;, we include it in our region. If
the winding number is zero or negative, we do not include it. This gives the

region R; which we will use as an approximation to the region R. (See Figure

3.2.14.)

We must show that the area of the differences of two successive approxima-
tions, Area(|Ri4+1 — Ril), is small. If we look at the approximations A; instead
of R;, we see that the difference between A;,; and A, is a region formed by 2°

triangles around the border of A; (See Figure 3.2.15.) We will let T;; be the
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Figure 3.2.15: The triangles T;.

triangle formed by the points a;;_1, @;; and @i41,2;-1. This triangle has edges
of lengths e;;, €;41,2;-1 and e€;;+12;. We will be able to show that on the average
two angles of these triangles are small (the angles at the vertices in 4;). This
shows the average area of a triangle is small, so the area of the region between
A; and A;4, is small. The region |Ri+; — R:| is an approximation of this, so it

also has a small area.

The intuitive reason that the average side angle of a triangle 7;; is small is
that a large angle adds a lot to the perimeter. For example, if all the angles of
triangles on the tth level are 45°, the perimeter of the (z + 1)st level will be /2
times the perimeter of the tth level. If the perimeter goes up by a large factor
at each step, and ends at the value p, it must start out very small. Otherwise,
there must be a lot of steps where the perimetér does not increase much. In

either case, the area of |R;4; — R;| is small on the average.

Merely showing that the area of |R;,; — R;| is small does not show that the
discrepancy is small. We must also show that there are a relatively small number
of choices at each stage for R;,,. Intuitively, there are only a small number of
choices because the points in B;,, which are added between two vertices of B;
usually fall near the midpoint of the edge between the two adjacent vertices.

There are only a small number of grid points near this midpoint, so the number
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of choices for B;4; is limited. We show this by showing that the triangles T;;

not only have two small angles, but also two nearly equal sides.

We must quantify all the intuitive notions presented above. It turns out that
the best quantity to look at is not the perimeter (the sum of the lengths of the
edges) but the sum of the squares of the edge lengths, Recall e;5, 1 < 7 < 2* were
the lengths of the edges of 4;. We will look at Ef;l e,?j. To obtain a quantity
that always increases, we must normalize this sum by 2°. We will also normalize
it by p® so ac to get a dimensionless number. What we actually use is thus a

: : : — 202 2
normalized generalized perimeter ¢; = > 2=1€i5-

In the rest of this proof, we will be looking closely at what happens in
triangle T;;. It will thus help to have generic names for the points in this
situation. When we are talking about a generic edge of A;, it will have endpoints
U and V, and the two edges it is replaced by will be UW and 1/V. We define
k=2([UW|? + |[VW|?}) — [UV|?, as we will be using this quantity often. We

define k;; to be this quantity for triangle T;;, so ki; = 2(€f,;,;_; + €}y 2;) — €.

15
We now prove some necessary facts about the sum of the squares of the edges,

so we can later bound the number of choices for B; and the area of R;,; — R;.

2 —2¢ 2

Let ¢ = 5 e;e

57 2j=1 Here ¢;; is the length of the jth edge of the ith ap-

proximation A; of R, and p is the perimete: of R. We will show the following
claim.
Claim 3.2.12:

12> giy1 = gq; for all 1.

Proof of Claim:

Alg <l

At the ith step, all the edges have length < £, and there are 2 of them. Thus,
i i 2 i 2

aTd<hHE(F) =H5Y(8) =1
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