Part I. Random Planar Matching

Chapter 1. The Matching Problems

In this chapter, we will define the planar matching problems that we inves-
tigate, and prove certain easy relationships between them. There are four main
problems, but each of these has several variations that we also discuss. For the
most part, these variations do not affect the expected value of the optimum

matching by more than a constant factor.

Many of these possible variations will be the same for all the problems. The
variations are in the way the poirts are distributed in the square; once the
distribution of the points has been chosen, the points can be matched in the
manner of any of the four basic problems. To make the exposition clearer, we
will first define the problems without giving all the variations, and introduce all

the variations in a later section.

For the first four sections, we will assume that we have a set P* of n + points,
and a set P~ of n — points. These points are independently and unifcrmly
distributed in a unit square. For each of the problems, we will wish to match
the — points to the + points. In different problems, there may be different
constraints on the matching, and we may be optimizing different functions of

the matching.
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1.1. Average Edge Length Matching

The average edge length problem is possibly the most natural of the matching
probiems we discuss in this thesis. We will call this problem M,. The problem is:
given n + points and n — points uniformly distributed in a unit square, match
the — points to the 4+ points so as to minimize the sum of the edge lengths. Let

‘he expected sum of the lengths of the edges of an optimal matching be 2,(n).

What is Da(n)?

—rﬂ

e problem was first investigated by Ajtai, Komlés and Tusnddy. They
show 'AKT] that D,(n) = ©(y/nlogn). In this thesis, we have simplified their
proof of the lower bound. By using a more complex constructicn than theirs,
we can avoid appealing to the Jifficult theorems on probability that they use.

We also show the stronger result that with probability 1 — 27 for € < 1, the

L\J

verage edge length of an optimal matching is (3(v/nlogn), where the constant
depends on €. It is easy to see that the upper bound does not hold with this
high probability. With probability 1 — —Q, the sum of the z-coordinates of the
— points and of the + points differ by {2(1/nTlogn). The horizontal components

of the edge lengths must sum to at least this difference, so the sum of the edge

lengths is 2(y/nlogn).

We also discuss a slight variation of this problem. Suppose that points may

be matched not only to points of the opposite sign, but also to the boundary of
he square. Again, we wish to minimize the sum of the edge lengths. We will
cail this problem M/. Let the expected sum of the edge lengths of an optimal
matching of this kind be D}(n). This gives a lower bound on the sum of the
edge lengths inside the square, even if points are permitted to be matched to

peints outside the square. By going to the dual problem, we will show that

Di(n) = O(Da(n)).



1.2. Rightward Matching

The rightward matching problem seems much less natural than the average
edge length problem. This problem is interesting because it arises in the proof
of 2 lower bound that applies to any on-line bin packing algorithm. It is also
intermediate between two previously considered problems: average edge length
matching and up-right matching. This is, to the best of our knowledge, the first

time the problem has been considered.

The rigntward matching problem M, is: given n + points and n — points in
the unit square, match every - point to a + point to its right or to the top or
bottom edge of the square and match every + point to a — point to its left or
to the top or bottom of the square. Find such a matching minimizing the sum
of the vertical lengths of the edges. Let the expected sum of the vertical lengths

of the edges of an optimal such matching be D,(n). What is D,(n)?

This problem has an equivalent variation which more closely resembles the
average edge length problem. Match the — points to their right and the + points
to their left, either to a point of the opposite kind or to any edge of the square.
Minimize the sum of the edge lengths. We call this problem M]. Let the expected
value of the sum of edge lengths in an optimal matching of this kind be D](n).

We can show, by going through the dual problem, that D(n) = ©(D,(n)).

It is clear that D)(n) < D}(n). This is because the M, and M! problems only
differ in the addition restriction on M! that edges go to the right. Any rightward
matching is a matching, so the optimal average edge length matching has sum of

edge lengths less than the optimal rightward matching. Thus, D,(n) = O(D,(n)).

1.3. Up-Right Matching

In the up-right matching problem M,, a — point may only be matched with
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a + point which is above and to the right of it. The goal is to minimize the

number of unmatched points. This problem has previously arisen in at least
two contexts. Karp, Luby and Marchetti arrived at it through an investigation
of two-dimensional bin packing [KLM]|. Dudley investigated the discrepancy of
lower regions during research on lower regions [Du]. Both of these investigations
resulted in bounds of O(y/nlogn) and Q(y/nlogn). We will prove that the

correct bound is ©(y/n log¥*n).

As in average edge length and rightward matching, we can produce an equiv-
alent problem M|, which has an answer of the same order and which resembles
the other problems M, and M]. In this equivalent problem M],, — points must
be matched up and to the right and 4+ points down and to the left, but poirts
may be matched off the square in the appropriate direction (i.e., — points must

be matched to the top or right edge, and + points to the bottom or left).

The preblem M, of up-right matching is: given + and — points randomly
distributed in a unit square, match the — points to the + points so that each
— point is matched up and to the right to a + point. What is the expected
number of points that are left unmatched by an optimum up-right matching?
We call this quantity N,,.

The equivalent problem M, is the following. Given n + and n — points
randomly distributed in a unit square, match the — points up and right to a
+ point. Points can also be matched to an appropriate border. Minimize the
sumn of the edge lengths of an optimal matching. Let this sum be D! . This

quantity has the same asymptotic behavior as N,;,.
Theorem 1.3.1: D/, = O(N,,).
Step 1: N, = O(D,,).

Proof: Consider squares which have the same center as our unit square S but

are smaller. Suppose we are given an up-right matching M. Let £ be the sizeof a
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side of the smaller square, and let Njs(z) be the number of edges of matching M

crossing the border of the smaller square. We have for any matching M,

1
/ NM(SC)d.’L' S DM,
Q

where D)y is the sum of the edge lengths of matching M. The integral counts
the component of the edge length perpendicular to the border of the smaller
square, which is less than the total edge length. The number of edges crossing
the border of the smaller square is at least the number of unmatched points
in the smaller square. Thus, E(Nux(z)) > Nur(nz?) > Ny(n/4) for z > 1.

Integrating, we get
1 1
= Nur(n/4) < E / Nat(2)dz) < D
0

Thus, N, = O(D.,). 1
Step 2: D!, = O(Nyr).

Suppose we have a matching M with K unmatched points. Each of the
unmatched points can be matched to the boundary of the square with edge
length at most 1. Thus, these unmatched points contribute at most K to the
sum of the edge lengths Dys. We now show the same bound for the edge lengths

of the matched points.

Ve show the sum of the edge lengths of the matched points is O(K). We
bound the vertical and horizontal edge lengths separately. The total edge length
is less than the sum of the horizontal and the vertical edge lengths because the
Euclidean distance between two points is always less than the distance in the
Manhattan metric. We bound the horizontal sum; the vertical bound is identical.

Consider the quantity
PIECED IR

Qert Per—
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the difference of the sums of the z-coordinates of the + points and of the

— points. This quantity averages ©(,/n) because the + and — points are dis-
tributed uniformly (and there are an equal number of each). With probability
1 — 2L, this is less than ©(y/nlogn). Let M* and M~ be the sets of + and —
points adjacent to an edge in the matching A{. Then

ZIQ—ZIQ: Z .’EQ_<_K,

Qept QeMt Qer+-M+

since the number of 4+ points in P* — M* is the number of unmatched points.

Similarly,
Z Irp — Z Ip S K.
PeP- PeM-
Thus,
E( Z g — Z :I:p) = O(logl/z \/;L‘—}- K)
QeM+ PeM-
However, 3. zg— 3% zp is the sum of the horizontal edge lengths. If K >
QeM+ PeM-

4/n this bounds the expected sum of the edge lengths by O(K), the bound we

wished to show. 1

1.4. Maximum Edge Length Matching

The maximum edge length matching problem M,, is: given n + and n
— points randomly distributed in the unit square, match the + points to the
— points, minimizing the maximum edge length. This problem has arisen in the
context of some VLSI problems [LL], and also seems a fairly natural question.
We will show in Chapter 3 that the optimal maximum edge length is with high
probability ©(log®/* n/y/n). We now show that the maximum edge length is at

least as large as the average edge length for an up-right matching.

Let 0, be the expected maximum edge length of an optimal matching. We
can produce an up-right matching with the same expected edge length D,,, and

thus O(nD,,) unmatched points.

19



Figure 1.4.1: Shifting the + points down and left.

Theorem 1.4.1: N,, = O(nDy).

Proof: Suppose that with high probability we can find a matching with maxi-
mum distance a. We shift all the + points in the square down and left by a. We
then find a matching with maximum edge length « in the overlap of the original
square and the shifted square. The — points in this matching come from the
lower left corner of the original square and the + poivnts from the upper right
corner of the shifted square (See Figure 1.4.1). The + points and the — points
in this new square are still uniformly distributed. By removing points at ran-
dom from this square (either + or — points, depending on which are excess),
we can ensure an equal number of + and — points in this square. These points
are still distributed uniformiy in the square. We can then with high probability
match these points with maximum edge length «. Shifting the + points back
to their original positions, all the edges become up-right edges. The number of
unmatched points is the maximum of the number of + points along the bottom
and left borders and the number of — points along the top and right borders.

This has expected value ©(na).
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1.5. Duality

All the problems we have described are special cases of bipartite matching.
The formulation of the bipartite matching problem that we use is: given a
complete bipartite graph G with weights on the edges, find a minimum perfect
matching. Bipartite matching has a dual problem, with the maximum solution
to the dual problem equal to the minimum weight matching. This dual problem
is just the linear programming dual of bipartite matching. It is often easier to
prove theorems by using the dual problem than by working directly with the

original problem. [PS]

We now look at the dual problem for minimum weighted perfect matching
in a complete bipartite graph G. Let Py, P,,..., P, and ©,,Q3,...,Q@, be the
vertices of a bipartite graph. Let f(P;Q;) be the weight on edge P;Q,. The dual
problem for the minimum perfect matching is: give weights w(P;), w{Q;) to the

vertices of G such that for any edge F;Q;,
w(Q;) ~ w(f) < f(RQ;).

The value of this solution to the dual problem is

Zw(Q‘-) - Z w(F;).

3
The maximum solution to the dual problem is the weight of the minimum perfect

matching.

It is easy to see that the maximum solution to the dual problem is at most
the minimum perfect matching. Let M be a matching. Suppose P; is matched
to Q,(;) in M, where ¢ is a permutation of n. Summing over the edges of M,
we get

n n n n

J;(R"Qa(i)) >3 w(Qum) —w(P) =Y QE) — > P(i).

i=1 =1 =1

=1
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This shows that any solution to the dual problem has value less than any match-

ing. Showing that the maximum solution to the dual has value equal to the
weight of the minimum matching is more difficult. It can be done by showing
the the optimum solution to the corresponding linear program is a matching and
appealing to the theorem for linear programming. It can also be done by giving
an algorithm that finds equal weight solutions to the primal and dual problems.

For a proof of this result, see [PS].

An especially simple case of this theorem is that of non-weighted bipartite
matching. For this problem, a bipartite graph G is given. The object is to find
the largest matching contained in G. This graph G can be considered a complete
bipartite graph with weights of 0 and 1 on the edges. A weight of 1 is given to
the edges in G. The goal is now to maximize the weight of a matching in the
complete bipartite graph. An optimal solution of the dual problem in this case
needs weights of only 0 and 1. The dual is stated in a more easily used form by

Hali’s Theorem below.

Hall’s Theorem: In a bipartite graph G between two sets of points P* and
P~, the number of unmatched + points in a maximal matching is

max |A| — |R(A)],

ACP+

where R(A) is the set of vertices of P~ that are adjacent to the vertices of A.

For the planar matching problems we are looking at, the dual functions
have nice properties. For the up-right and the maximum edge length matching
probiems, we are dealing with unweighted matchings. Thus, Hall’s theorem
for maximum matching applies to these cases. For the rightward matching
and the average distance matching, one can take the weight function to be a
function mapping the unit square into [—1, 1] that has certain constraints on its

slope. This has two nice properties: the same function applies to the + and the
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— points, and the dual problem is geometrically meaningful, and so is easier to

work with.

For the up-right matching problem, the dual problem is simple. Consider a
subset A of the + points. Let B be the set of — points that can be matched to
a point in set A (i.e., the set of — points below and to the left of a point of A).
We wish to find a set 4 which maximizes |A| — |B|. We will show in Chapter 3
how to find a set such that |A] — |B| = Q(y/nlog**n). This shows that upward

right matching leaves at least {2(y/% log®*n) points unmatched.

For maximum distance matching, we need tc specify a distance d to obtain
the dual problem. To obtain a perfect matching with edge length d, we need a d
such that for all subsets A of + points, the set B of — points within distance d of
a point in A contains at least as many points as A does. In Chapter 3, we show
that for d = ﬂ(logs/4 n/4/n), this holds with high probability. This implies that
the maximum distance in an optimal matching is O(logs/ ‘n/y/n). Ccmbined
with the result on up-right matching above, this shows that an \.ptimal up-right
matching leaves O(/n log3/ *n) points unmatched and an uptimal maximum

distance matching has edges of length ©(log**n/\/n).

For the average edge length matching problem, the constraints are that
if a + point z, and a — point z_ are separated by distance d(z,;,z.), then
w(z,) — w(z.) £ d(z4+,z-). We will show that given a dual function satisfying
this, we can get a function giving a dual solution at least as large which maps
the unit square into [—1,1] and has slope \Iff'f lw(z) — w(y)|/d(z,y)) at most
1. We do this by only using the values for the — points. We will increase the
values of the + points as far as possible, consistent with the given — points. We
will also decruase the values of any — points which are “dominated” by other —
points. We claim tnat this gives a dual functior mapping the unit square into R

which has slope at most 1. The function we obtain will clearly give at least as
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good a dual solution as the original function, since we decrease the values of the
—’s and increase the values of the +’s. All we must show is that this function

has a slope of at most 1.
We start with the set P~ of — points and a weight function w on them. The

function w' will be

w'(X) = min (d(P,X) + w(P)).

Clearly, w'(P) < w(P) if P € P, since one of the terms we take the minimum
of is w(P). Also, w'(?) > w(Q) if Q is a + point since w(Q) < w(F) + d(P, Q)
for any — point P. We wish to show that the slope of w' is at most 1, that is,
that if two points are separated by distance d, then their values differ at most
d. Suppose there are two points, X; and X3, that do not satisfy this condition,
with w'(X;) < w'(X3). Then

w'(Xz) - w'(Xl) > d(Xl,Xz).

Since w'(X) = }Ereliﬂn; w(P) + d(P, X), there is a — point P such that

w'(X,) = w(P) + d(P, X;).
We also have

w'(X;) < w(P) + d(P, X3).
Subtracting the above equations, we obtain

d(P,X;) —d(P, X;) >w'(X;)—w'(X))
2 d(XlaXZ)y
which violates the triangle inequality. Thus, the points of the optimal dual

solution satisfy the condition that the slope of the function between any two of

theni is at most 1.
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We have shown that we can assume our dual function is a function mapping
the unit square into R with slope at most 1. Since no two points are farther
than /2 and the slope of w' is at most 1, the most that two values of w' can
differ by is v/2. We can thus normalize w' by adding some constant to it so that
w' maps the square into [—1,1]. ([—=v/2/2,v/2/2] to be exact.)

The proof above actually works inn a more general setting. We will need
this generalization for the dual problems to M), M, and M]. In the general
setting, the weight f(X,Y) of an edge from X to Y is not necessarily the same
as the weight f(Y, X) of an edge from Y to X. All we will need is the triangle
inequality: f(X,Y) + f(Y,Z) > f(X,Y). This generalization is stated in the

following lemma.

Lemma 1.5.1: Suppose we are given a set of points X and a function f mapping
(X, X) into the non-negative reals satisfying f(X,X) = 0 for X € X and the
triangle inequality f(X,Y)+ f(Y,Z) > f(X, Z) for X,Y,Z € X. Suppose we
are given a set of + points P* C X and a set of — points P~ C X. Let w be a
weight function mapping P* U P~ into R such that w(Q) — w(P) < f(P, Q) for
Q@ € Pt and P € P~. Then there is a weight function w' such that w'(Q) > w(Q)
for Q € P*, w'(P) < w(P) for P € P7, and v'(X;) — w'(X1) < f(X1,X3) for
X1, X2 € X.

Proof: As before, we let

w'(X) =m g(w{P) + f(P, X)).

e
Suppose there are two points X, and X3 such that
‘UJ(XQ) - ‘UJ(XI) > f(Xl,Xz).
By the choice of w', we can find a P € P~ such that

w'(Xy) = w(P) + (P, Xi)
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and

w'(X2) < w(P) + f(P, Xy).
From these equations, we get

f(P,X;) 2w'(Xs) —w(P)
> f(Xl..Xz) + f(P, Xl)s

a contradiction since it violates the triangle inequality. Thus, for any two points,
w(Xy) — w(X;) < f(X1, Xz).

We still need to show we have reduced the values of the — points and in-
creased the values of the + pecints. We have w'(P) < w(P) for P € P~ since one
of the terms in the expression for w'(P) is w(P) + f(P, P) = w(P). We have
w'{Q) > wl(Q) for Q € P* since w(Q) < w(P) + f(P,Q) for all P€ P, and to
obtain w'(Q) we take the minimum of these. This proves Lemma 1.5.1. 1

Now we will show that if points may be matched to the boundary of the
square as well as to poirts of the opposite kind, the optimal dual function can
be made to satisfy the conditions that the slope is at most 1 and that the
function is 0 on the boundary of the square. Here, the conditions on the values

of 2 + point @ and a — point P is that they satisfy
w(Q) — w(P) < min(d(P,Q),d(P, S) + d(Q, S)),

where d(P, S) is the distance from point P to the nearest boundary of the square.
This is because we can take the unmatched points, and consider them to be
matched in pairs. Matching both P and Q to the boundary gives edge lengths
d(P,S) + d(Q,S). This weight function satisfies the triangle inequality, since it
is the shortest distance from P to Q, when you are allowed to go through the

houndary from any point on the boundary to any other point on it.
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By Lemma 1.5.1 above, we obtain a dual functicn w' such that any two

peints X, X, satisfy
w(X;) — w(X,;) < min(d(X1, X;),d(X;,S) + d(X,, S}).

We claim that functions w satisfying this equation are exactly those functions
with slope at most 1 which are constant on the boundary. We have |w(X;) --
w(X1)| < d(X;,X;), which is the condition for slope 1. We have w(X3) —
w(X1) < d{X1,8) + d(X,,S). Since for X on the boundary of the square,
d(X,S8) = 0, we have that w(X;) = w(X;) for X, X, on the boundary of the
square.

Furthermore, any function which has slope at most 1 and is constant on the
boundary satisfies the equation. If the slope is at most 1, |w(X;) — w(X,)]| <
d(Xy, X;) and |w(X) — w(S)| < d(X,S), where w(S) is the value of v on the

boundary of the square. Thus,
w(Xz) —w(X1) < |w(Xi)—w(S)|+ |w(S) - w(Xa)
<d(X1,8) +d(X;,S).

We can normalize the function so that w' is 0 on the boundary of the square.
Any function which is O on the boundary and has slope at most 1 satisfies the

above constraints for the dual problem of M', so we can take these as the

h

conditicas for the dual function.

We now use the dual problems given above to prove the following theorem.
Theorem 1.5.2: D, = ©(D;).

Proof: Clearly, D, > D, since being permitted to match to the boundary can
only decrease the expected sum of the edge lengths. We thus only need tc
prove that D! = O(D,). We construct a dual function for the problem M) by
taking a dual function for the problem Af, on the middle ninth of the square
and extending it to make the boundary of the square 0. (See figure 1.5.1)
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Figure 1.5.1: Extending the function w.

We can construct a dual function on the middle ninth so as to map the
middle ninth of the square into the interval [— 2, 2] and so as rever to have slope
more than % We can then‘ extend the function to the rest of the square by using
a linear function between the edge of the middle square and the edge of the
outside square. This function has a slope of at most 1, since it has a slope of at
most % both in the horizontal and in the vertical directions. The points outside
the middie square add an expected value of O to the function, because they are
as likely to be + points as — points, and they had no effect on the function we
constructed. Thus, the expected value of the dual solution on thc whole square

is the expected value on the middle square, whichk is ©(0]). #

We now give a similar argument to show that the two rightward matching
problems are equivalent. Recall [, is the expected value of the vertical edge
length of a rightward matching (where matching to the top and bottom of the
square is allowed) and D] is the expected value of the average edge length of a
rightward matching (where matching to any side of the square is allowed.) We
will use the Manhattan metric to measure D). This changes the edge lengths
at most by a factor of v/2, and makes the proof easier. We show that the
constraints on the dual function for the M, problem are that this dual function

is 0 on the top and bottom of the square, that its vertical slope is less than 1 and
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