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Good quantum error-correcting codes exist

A. R. Calderbank and Peter W. Shor
AT&T Research, 600 Mountain Avenue, Murray Hill, New Jersey 07974

~Received 12 September 1995!

A quantum error-correcting code is defined to be a unitary mapping~encoding! of k qubits ~two-state
quantum systems! into a subspace of the quantum state space ofn qubits such that if anyt of the qubits
undergo arbitrary decoherence, not necessarily independently, the resultingn qubits can be used to faithfully
reconstruct the original quantum state of thek encoded qubits. Quantum error-correcting codes are shown to
exist with asymptotic rate k/n5122H2(2t/n) where H2(p) is the binary entropy function
2plog2p2(12p)log2(12p). Upper bounds on this asymptotic rate are given.@S1050-2947~96!00708-1#

PACS number~s!: 03.65.Bz, 89.70.1c
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I. INTRODUCTION

With the realization that computers that use the interf
ence and superposition principles of quantum mecha
might be able to solve certain problems, including prim
factorization, exponentially faster than classical comput
@1#, interest has been growing in the feasibility of these qu
tum computers, and several methods for building quan
gates and quantum computers have been proposed@2,3#. One
of the most cogent arguments against the feasibility of qu
tum computation appears to be the difficulty of eliminati
error caused by inaccuracy and decoherence@4#. Whereas the
best experimental implementations of quantum gates acc
plished so far have less than 90% accuracy@5#, the accuracy
required for factorization of numbers large enough to be
ficult on conventional computers appears to be closer to
part in billions. We hope that the techniques investigated
this paper can eventually be extended so as to reduce
quantity by several orders of magnitude.

In the storage and transmission of digital data, errors
be corrected by using error-correcting codes@6#. In digital
computation, errors can be corrected by using redundanc
fact, it has been shown that fairly unreliable gates could
assembled to form a reliable computer@7#. It has widely been
assumed that the quantum no-cloning theorem@8# makes er-
ror correction impossible in quantum communication a
computation because redundancy cannot be obtained by
plicating quantum bits. This argument was shown to be
error for quantum communication in Ref.@9#, where a code
was given that mapped one qubit~two-state quantum system!
into nine qubits so that the original qubit could be recove
perfectly even after arbitrary decoherence of any one of th
nine qubits. This gives a quantum code on nine qubits wit
rate 1

9 that protects against one error. Here we show the
istence of better quantum error-correcting codes, havin
higher information transmission rate and better err
correction capacity. Specifically, we show the existence
quantum error-correcting codes encodingk qubits inton qu-
bits that correct t errors and have an asymptotic ra
122H2(2t/n) asn→`. These codes work not by duplica
ing the quantum state of the encodedk qubits, but by spread
ing it out over alln qubits so that ift or fewer of these qubits
are measured, no information about the quantum state o
encoded bits is revealed and, in fact, the quantum state
541050-2947/96/54~2!/1098~8!/$10.00
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be perfectly recovered from the remainingn2t qubits.
Suppose that we have a coherent quantum state ofk qu-

bits that we wish to store using a physical quantum sys
which is subject to some decoherence process. For exam
during computation on the quantum computer proposed
Cirac and Zoller@3#, we would need to store quantum info
mation in entangled electronic states of ions held in an
trap. The decoherence time of the quantum state ofk en-
tangled qubits is in general 1/k of the decoherence time o
one qubit~this makes the optimistic assumption that coh
ence between different qubits is as stable as coherence
single qubit!. Thus one might expect that the best way
store the state ofk entangled qubits is to store them ink
physical qubits. Our results show that if we use quant
error-correcting codes, it is possible to store thek qubits in
n.k qubits so that the decoherence time for the enco
quantum state is a small constant fraction of the decohere
time of one qubit. These results thus show that some m
surable nonlocal properties of entangled systems are m
more stable under decoherence than is the entire entan
system.

Physical quantum channels will be unlikely to lea
n2t qubits perfectly untouched and subject the remainint
qubits to decoherence. To analyze the behavior of our er
correcting code for physical quantum channels, we m
make some assumptions about the decoherence proces
Sec. VI, we will show that our error-correction method pe
forms well if the decoherence of different qubits occurs
dependently, i.e., if each of the qubits is coupled to a se
rate environment. Our error-correction method will actua
work for more general channels, as it can tolerate coup
decoherence behavior among small groups of qubits.

The lower bound of 122H2(2t/n) shown in our paper
should be compared with the theoretical upper bounds o

min@12H2~2t/3n!,H2„@ 1
2 1A~12t/n!t/n…#

for t/n, 1
2, and 0 for t/n> 1

2. These are obtained from
bounds on the quantum information capacity of a quant
channel, which we derive in Sec. VI from results of Re
@10,11#. These bounds are plotted in Fig. 1.
1098 © 1996 The American Physical Society
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54 1099GOOD QUANTUM ERROR-CORRECTING CODES EXIST
II. DEFINITIONS

Our constructions of quantum error-correcting codes r
heavily on the properties of classical error-correcting cod
We will thus first briefly review certain definitions and pro
erties related to binary linear error-correcting codes. We o
consider vectors and codes overF2 , the field of two ele-
ments, so we have 11150. A binary vectorvPF2 with d
1’s is said to haveHamming weight d, denoted by
wt(v)5d. TheHamming distance dH(v,w) between two bi-
nary vectorsv andw is wt(v1w). The supportof a vector
v, denoted by supp(v), is the set of coordinates ofv where
the corresponding entry is not 0, that is, supp(v)5$ i :v i

Þ0%. Suppose thatS is a set of coordinates. ThenvuS de-
notes the projection ofv onto S, i.e., the vector that agree
with v on the coordinates inS and is 0 on the remaining
coordinates. For a binary vectorE we use vuE to mean
vusupp(E) . We also use e<E to mean that
supp(e)#supp(E).

A codeC of lengthn is a set of binary vectors of lengt
n, called codewords. In a linear code the codewords are
those vectors in a subspace ofF2

n ~the n-dimensional vector
space over the fieldF2 on two elements!. Theminimum dis-
tance d5d(C) of a binary codeC is the minimum distance
between two distinct codewords. IfC is linear then this mini-
mum distance is just the minimum Hamming weight of
nonzero codeword.

A linear code with lengthn, dimensionk, and minimum
distanced is called an@n,k,d# code. For a codeC with
minimum distanced, any binary vector inF2

n is within Ham-
ming distancet5 b(d21/2)c of at most one codeword; thus
a code with a minimum distanced can correctt errors made
in the bits of a codeword; such a code is thus said to bet
error-correcting code. Therate R of a linear code of length
n is dim(C)/n; this is the ratio of the information content o
a codeword to the information content of an arbitrary str
of length n. The dual codeC' of a codeC is the set of
vectors of perpendicular to all codewords, that is,C'5$v
PF2

n :v•c50;cPC%. From linear algebra, dim(C)
1dim(C')5n.

In this paper, we will use the@7,4,3# Hamming code as an
example to illustrate our construction of quantum err
correcting codes. This code contains the following 16 bin
vectors of length 7:

FIG. 1. The solid line shows the asymptotic rateR of our quan-
tum codes versus the error rate of the channelt/n. Two upper
bounds for this quantity are also plotted: the Levitin-Holevo up
bound with a dashed line and the entanglement upper bound w
dotted line.
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0000000, 0001011, 0010110, 0011101,

0100111, 0101100, 0110001, 0111010,

1000101, 1001110, 1010011, 1011000,

1100010, 1101001, 1110100, 1111111. ~1!

The minimum distance is the minimum Hamming weight
a nonzero codeword, which is 3, so this is a one-error c
recting code. It is easily verified that the dual code cons
of all vectors in the Hamming code with an even weight.

The quantum Hilbert spaceH2
n over n qubits is the com-

plex space generated by basis vectorsub0&, ub1&, . . . ,
ub2n21& where bi is the representation of the numberi in
binary. This Hilbert space has a natural representation a
tensor product ofn copies ofH2 , with the i th copy corre-
sponding to thei th bit of the basis vectors. We refer to eac
of these copies ofH2 as aqubit.

We define aquantum error-correcting codeQ with rate
k/n to be a unitary mapping ofH2

k into H2
n . Strictly speak-

ing, this is actually a unitary mapping ofH2
k into a

2k-dimensional subspace ofH2
n ; it can alternatively be

viewed as a unitary mapping ofH2
k

^H2
n2k into H2

n , where
the quantum state inH2

n2k is taken to be that where all th
qubits have quantum stateu0&. In our model of error ana-
lyzed in Sec. IV, we will assume that the decoherence p
cess affects onlyt bits; that is, the decoherence is model
by first applying an arbitrary unitary transformationD to the
space consisting of the tensor productH2

t
^Henv of any t of

the qubits and some arbitrary Hilbert spaceHenv designating
the environment, and then tracing over the environm
Henv to obtain the output of the channel, which will thus
general be an ensemble of states inH2

k . We say that a quan
tum code can correctt errors if the original stateux&PH2

k

can be recovered from the decohered encoded stateDQux&
by applying a unitary transformationR ~independent ofD)
to H2

n
^Hanc, whereHanc is a Hilbert space representing th

state of an ancilla~i.e., a supplementary quantum system!. It
turns out that if our quantum code will correct anarbitrary
decoherence oft or fewer qubits, it will also be able to trans
mit information with high fidelity for a large class of chan
nels with physically plausible decoherence processes; th
discussed in Sec. VI.

Since the error correction must work for any encod
stateQux&, the property of being a quantum error-correcti
code depends only on the subspaceQH2

k of H2
n , and not on

the actual mappingQ. However, for ease of explanation, w
will nonetheless define an orthogonal basis of this subsp
of H2

n , which can be used to obtain an explicit mappi
Q, and call the elements of this basis codewords.

III. QUANTUM CODES

We will now define our quantum code. Suppose that
have a linear codeC1,F2

n . We letHC1 be the subspace o

H2
n generated by vectorsuc& with cPC1 . Let M be a genera-

tor matrix for C1; this means thatC1 is the row space of
M , so thatvM ranges over all the codewords inC1 as v

r
a
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1100 54A. R. CALDERBANK AND PETER W. SHOR
ranges over all vectors inF2
dim(C1) . For wPF2

n , we define a
quantum stateucw& by

ucw&522dim~C1!/2 (
vPF

2

dim~C1!
~21!vMwuvM &. ~2!

Note that if w11w2PC1
' , then ucw1

&5ucw2
&, sincevMw1

5vMw2 for all vPF2
dim(C1) . Further note that̂ cw1

ucw2
&

50 if w11w2¹C1
' . This follows since(v(21)vMw50 un-

less vMw50 for all vPF2
dim(C1). Thus for wPF2

n/C1
'

the vectorsucw& form a basis for the spaceHC1. ~Here

F2
n/C1

' stands for the cosets ofC1
' in F2

n , which are the sets
C1

'1w wherewPF2
n ; there are 2dim(C1) of these cosets an

they form the natural index set for the quantum sta
ucw&.)

Suppose now that we have another linear codeC2 with
$0%,C2,C1,F2

n . Our quantum code will be constructed u
ing codesC1 andC2 . We define the codewords of our qua
tum codeQC1 ,C2 as the set ofucw& for all wPC2

' , Recall that

two codewordsucw& anducw8& are equal ifw1w8PC'. The
natural index set for the codewords is thus overC2

'/C1
' , the

cosets ofC1
' in C2

' . This code thus contains 2dim(C1)2dim(C2)

orthogonal vectors. Since its length isn qubits, it has a rate
(dim(C1)2dim(C2))/n. To construct a quantum error
correcting code from the Hamming code given in Eq.~1!, we
will take C1 to be this code andC2 to be C1

' . Thus,
dim(C1)54 and dim(C2)53, so our quantum error
correcting code will map 42351 qubit into 7 qubits. There
are thus two codewords. The first is

uc0&5 1
4 ~ u0000000&1u0011101&1u0100111&1u0111010&

1u1001110&1u1010011&1u1101001&1u1110100&

1u0001011&1u0010110&1u0101100&1u0110001&

1u1000101&1u1011000&1u1100010&1u1111111&),

~3!

and the second is

uc1&5 1
4 ~ u0000000&1u0011101&1u0100111&1u0111010&

1u1001110&1u1010011&1u1101001&1u1110100&

2u0001011&2u0010110&2u0101100&2u0110001&

2u1000101&2u1011000&2u1100010&2u1111111&).

~4!

Note that in uc1& all the codewords of the Hamming cod
with an odd weight have a negative amplitude, and all
codewords with an even weight have a positive amplitu
This is the effect of the (21)vMw term in Eq.~2!.

We will show that ifC1 andC2
' have a minimum distance

d, then the quantum codeQC1 ,C2 can correctt5 b(d21/2)c
errors.~For our example code,C15C2

' has a minimum dis-
tance 3, so our quantum code will correct one error.! In the
remainder of this section, we will give some intuition as
s

e
.

why this should be true; while in the next section, we w
work out this calculation in detail.

To show why our codes are error correcting, we must fi
give another representation of our codewords. If we perfo
the following change of basis,

u0&→
1

A2
~ u0&1u1&) ~5!

u1&→
1

A2
~ u0&2u1&),

to each of the bits of our codeworducw& we obtain the state

usw&52~dim~C1!2n!/2 (
uPC1

'
uu1w&. ~6!

We can see this since ifux& is any basis state in the rotate
basis given by Eq.~5!, then

^xucv&522~n1dimC1!/2 (
vPF

2

dim~C1!
~21!vM ~w1x!, ~7!

and this sum is 0 unlessw1xPC1
' . Lettingu5w1x, we get

Eq. ~6!. For our example quantum code,

us0&5
1

2A2
~ u0000000&1u0011101&1u0100111&

1u0111010&1u1001110&1u1010011&

1u1101001&1u1110100&) ~8!

and

us1&5
1

2A2
~ u0001011&1u0010110&1u0101100&

1u0110001&1u1000101&1u1011000&

1u1100010&1u1111111&). ~9!

We can now see how these codes are able to correc
rors. In theucw& representation, all the codewords are sup
positions of basis vectorsuv& with vPC1 . Thus anyt bit
errors ~those errors takingu0&→u1& and u1&→u0&) can be
corrected by performing a classical error-correction proc
for the codeC1 in the original basis. In theusw& representa-
tion, all the codewords are superpositions of basis vec
uv& with vPC2

' . Thus anyt bit errors in the rotated basis ca
be corrected by performing a classical error-correction p
cess for the codeC2

' in the rotated basis. However phas
errors in the original basis~errors taking u0&→u0& and
u1&→2u1&) are bit errors in the rotated basis and vice ver
Thus our quantum code can correctt bit errors andt phase
errors in the original basis.

The correction process we use for our quantum err
correcting codes is indeed to first correct bit errors in
ucv& basis classically and then to correct bit errors in t
usv& basis classically. It remains to be shown that the corr



th
ra
ll
ug
.
e-
tu
ou
d
o

e
in
m
e

e
i
ic

b
d

r
d

me

bit
e
we

um

be
ical

tes

54 1101GOOD QUANTUM ERROR-CORRECTING CODES EXIST
tion process for the bit errors does not interfere with
correction process for the phase errors, and that arbit
nonunitary errors ont or fewer quantum bits of our code wi
also be corrected by this procedure. This is done thro
calculations which are performed in Sec. IV of our paper

As in Ref. @9#, we correct the error by correcting the d
coherence without disturbing the encoded information. In
itively, what we do is to measure the decoherence with
observing the encoded state; this then lets us correct the
coherence while leaving the encoded state unchanged. In
decoding procedure, we thus learn which qubits had bit
rors and which had phase errors, which tells us someth
about the decoherence process but which gives no infor
tion about our encoded state. Linear codes are very w
suited for this application: each codeword has the same r
tion to all the other words in the code, and this property
what enables us to measure the error without learning wh
codeword it is that is in error.

Recently we learned that related work has been done
Steane@12#. Steane generates his quantum code using co
words

usw8 &522dim~C2!/2 (
vPC2

uv1w&, ~10!

where w is chosen fromC1 /C2 . This is the same as ou
usw& basis if the codesC1 andC2

' are interchanged. It shoul
also be noted that these codewordsusw8 & generate exactly the
same subspace ofH2

n as the codewordsucw& given by Eq.
~2!, and thus effectively give a different basis for the sa
quantum code.
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IV. DECODING QUANTUM CODES

In this section we will show that errors in anyt qubits of
our quantum codes can be corrected by first correcting
errors in theuc& basis, and then correcting bit errors in th
us& basis. For this section and the remainder of this paper,
will assume for simplicity that dim(C1)5n2k and
dim(C2)5k; thus, the rate of our codes will be 122k/n.
However, all of our results are easily extendable to quant
codes derived from classical codesC2,C1,F2

n of any di-
mension.

In order to prove that errors in quantum codes can
corrected, we first need a lemma about purely class
codes.

Lemma 1.Suppose thatC is a binary linear code of length
n. Let e, E P F2

n , with e<E and wt(E),d(C'). Then there
exists a vectorvePC such thatveusupp(E)5e.

Proof. The projection ofC onto E has to have full rank,
because otherwiseC' would contain a vectorw with
wt(w)<wt(E),d(C').

We now need the following lemma about the sta
ucw&.

Lemma 2.Suppose thatC1 has a minimum distanced. Let
e, E P F2

n with e<E. Let P be the projection onto the
subspace ofH2

n generated by alluv& wherev is in the set
$vPF2

n :vuE5e%, that is, withv equal toe on supp(E). Then
^cw1
uPucw2

&522~n2k! (
v:vM uE5e

~21!vM ~w11w2! ~11a!

5H ~21!e•~c1w11w2!/2wt~E! if 'cPC1
' such thatc1w11w2<E,

0 otherwise.
~11b!
at

tor

t

Proof.From the definition ofucw& in Eq. ~2!, it is straight-
forward to show Eq.~11a!. We must now show that this i
equal to Eq.~11b!. Since wt(e),d(C1

'), by Lemma 1 there
is a vectorve such thatveM uE5e. We can obtain the linea
space$vPF2

n2k :vuE5e% by taking every vector in the se
$vPF2

n2k :vuE50% and adding the vectorve . Using this sub-
stitution in Eq.~11a! gives

^cw1
uPucw2

&522~n2k! (
v:vM uE50

~21!~v1ve!M ~w11w2!

~12a!

522~n2k!~21!veM ~w11w2!

3 (
v:vM uE50

~21!vM ~w11w2!. ~12b!
Now, because the set $vM :vM uE50% is an
n2k2wt(E) dimensional subspace ofF2

k , the sum~12b! is
0 unlessvM (w11w2)50 for all vM in this subspace. It is
clear that if there is acPC1

' such thatw11w21c<E,
then vM (w11w2)50 if vM uE50, and veM (w11w2)
5e•(c1w11w2). This shows the first part of Eq.~11b!.

We now prove the other direction. Suppose th
vM (w11w2)50 for all v with vM uE50. Let ej be the vec-
tor that is 1 on thej th coordinate ofE and 0 on the other
coordinates. We know from Lemma 1 that there is a vec
v jPF2

n2k such thatv jM uE5ej . Let s j5v jM (w11w2). We
consider the vectorc85w11w21( j 51

wt(E)s jej ; we will show
that this vector satisfies the conditions for thec in Eq. ~11b!.
Clearly, w11w21c8<E. We need also to show thatc8
PC1

' . Consider any vectorvPF2
n2k . We can decompose i

into v5v01( i 51
wt(E)a iv i wherev0M uE50, anda i is 0 or 1.

Note thatv iMej5d( i , j ) whered is the Kroneckerd func-
tion. Now,
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vMc85S v01 (
i 51

wt~E!

a iv i D M S w11w21 (
j 51

wt~E!

s jej D
~13a!

5S (
i 51

wt~E!

a iv i D M S w11w21 (
j 51

wt~E!

s jej D
~13b!

5 (
i 51

wt~E!

a iv iM ~w11w2!1 (
i 51

wt~E!

a is i ~13c!

50,

proving the second part of Eq.~11b!. The terms containing
v0 vanish in Eq. ~13a! becausev0M (w11w2)50 since
v0M uE50, andv0Mei50 sinceeiaE. The two terms in Eq.
~13c! cancel because of the definition ofs i .

We are now ready to prove the following theorem.
Theorem 1.If C1 andC2

' are both linear@n,n2k,d# codes
with $0%,C2,C1,F2

n , then the quantum codeQC1 ,C2 is a

t-error-correcting code, wheret5 b (d21)/2 c.
Proof. We show how to correct anyt errors. Let us start

with a codeworducw& for wPC2
' . Now, let E be the binary

vector such that supp(E) is the set of qubits that have dec
hered. By our hypothesis that at mostt qubits decohere, we
can take wt(E)5t. We denote states of the environment
uai&. Since the decoherence only operates on those qubi
supp(E), the most general decoherenceD is a unitary pro-
cess operating on a binary vectoru and the initial state of the
environmentua0& as follows:

Duu,a0&5 (
e<E

uu1e&uauuE ,e&, ~14!

where the states of the environmentuai& are not necessarily
normalized. Now, we let this decoherence act onucw&ua0&.
We get

Ducw ,a0&522~n2k!/2 (
vPF2

n2k
~21!vMw

3 (
e<E

uvM1e&uavM uE ,e&. ~15!

Now, we knowvMPC1 , which is a code with a minimum
distanced.2wt(e). Thus we can restorevM1e to a unique
codewordvMPC1 . Intuitively, this corrects bits that hav
flipped from 0 to 1 orvice versa. We can do this using a
unitary operatorRf provided we make the operation rever
ible; to do this we record the errore in a set of ancilla qubits
A. After this process, the quantum state of our system is

RfDucw&522~n2k!/2(
v

~21!vMw

3 (
e<E

uvM &uavM uE ,e&uAe&. ~16!
in

Note that sincevMPC1 , we have now corrected our state
some state in the Hilbert spaceHC1. Recall that the vectors

ucu& with uPF2
n generatedHC1. What we do now is to con-

sider the Hilbert spaceHC1 in terms of the basis element

ucu& for uPF2
n/C1

' instead of the basis elementsuvM &. We
do this by substituting the identity

uvM &522~n2k!/2 (
uPF2

n/C1
'

~21!vMuucu& ~17!

in Eq. ~16!. This gives the same type of effect as the chan
of basis in Eq.~5! in that it produces a representation
which it is easier to deal with phase errors. The substitut
~17! gives the equation

RfDucw&522~n2k!(
v

~21!vMw

3(
u

~21!vMuucu& (
e<E

uavM uE ,e&uAe&,

~18!

which can be rewritten as

RfDucw&522~n2k! (
e<E

uAe& (
e8<E

uae8,e&(
u

ucu&

3 (
v:vM uE5e8

~21!vMw~21!vMu. ~19!

Now, by Lemma 2, the inner sum is 0 unless there ex
cPC1

' for which c1w1u<E. This means thatucw& can
only decohere toucu& if there is a cPC1

' such that
wt(u1w1c)<t. We now show this means that for eac
ucu& there is a uniqueucw& with wPC2

'/C1
' which it could

have arisen from. Suppose that we have two suchw’s, w1
andw2 with w11u1c15e1 andw21u1c25e2 . Then,

e11e25w11w21c11c2PC2
' . ~20!

However,

wt~e11e2!<wt~e1!1wt~e2!<2t. ~21!

But C2
' has minimum distanced.2t; thus e15e2 , so

w11w2PC1
' and ucw1

&5ucw2
&.

This means that we can unitarily express the state in
~19! in terms ofucu&, whereuPF2

n/C1
' , and then correct the

state ucu& to ucw&, since there is at most onew with
dH(w,u),t. As before, to unitarily correctucu& to ucw& we
need to use a second ancillaA8 to record which bits we
needed to flip to get fromu to w. These flipped bits corre
spond to phase errors in the original basis. Denoting
correction operator byRp , we get
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RpRfDucw&522~n2k! (
e<E

uAe& (
e8<E

uae8,e&

3 (
v:vM uE5e8

(
e9<E

~21!vMw

3~21!vM ~w1e9!ucw&uAe9
8 &

522~n2k!ucw& (
e<E

uAe& (
e8<E

uae8,e& ~22!

3 (
e9<E

uAe9& (
v:vM uE5e8

~21!vMe9

522wt~E!ucw& (
e<E

uAe& (
e9<E

uAe9
8 &

3 (
e8<E

~21!e8•e9uae8,e&,

which is justucw& tensored with a state of the ancillae and t
environment thatdoes not dependon w. We have thus uni-
tarily restored the original state and correctedt decohered
bits.

V. WEAKLY SELF-DUAL CODES

To show that a family of codes contains codes that m
the Gilbert-Varshamov bound we can often employ a v
simple greedy argument; this argument appears in Ref.@6#,
pp. 557 and 558~proof of Theorem 31 of Chap. 17!.

Lemma 3.Let f i be a set of@ni ,ki # codes such that
~1! ki /ni.R
~2! each nonzero vector of lengthni belongs to the same

number of codes inf i .
Then there are codes in the family that asymptotica

meet the Gilbert-Varshamov bound

R>12H2S d

nD asn→`. ~23!

Proof. Let Wi be the number of codes inf i that contain a
particular vectorv. By hypothesis,

~2ni21!Wi5~2ki21!uf i u. ~24!

The number of vectors with weight less thand is

(
j 50

d21 S ni

j D . ~25!

If

Wi (
j 50

d21 S ni

j D,Wi~2ni21!/~2ki21!5uf i u ~26!

then there is a code inf i with minimum distance>d.
Q.E.D.

This proof is not constructive in that it does not produ
codes satisfying this bound, but merely shows that they e
et
y

y

t.

In fact, explicit constructions for classical codes that att
the Gilbert–Varshamov bound asymptotically are n
known.

Consider towers of codes as shown below

$0%#^^1n&&#C#C'#F2
n , ~27!

where dimC5k and dimC'5n2k. Here^^1n&& denotes the
subspace ofF2

n generated by the vector 1n containing all
ones. The codesC andC' correspond toC2 andC1 , respec-
tively, in Sec. III; we have now added the requirement th
C1

'5C2 . We follow MacWilliams, Sloane, and Thompso
@13#. They call a codeweakly self-dualif

^^1n&&#C#C'. ~28!

Given a vectorv with even weight we need that the numb
of k-dimensional weakly self-dual codes for whichvPC' is
independent of v. In other words, the number o
k-dimensional weakly self-dual codesC contained in a given
hyperplanev' is independent ofv.

We apply Theorem 2.1 of Ref.@13# ~actually a stronger
statement established in the proof!. Let sn,k,s be the number
of k-dimensional weakly self-dual codesC@n,k# that contain a
givens-dimensional codeC@n,s# . Then the numberssn,k,s are
independent of the codeC@n,s# that was chosen.

We separate the casevPC@n,k##C@n,k#
' from the casev

PC@n,k#
' \C@n,k# . The number ofk-dimensional weakly self

dual codesC@n,k# for which vPC@n,k# is just sn,k,2 , the num-
ber of codes containing the two-dimensional spa
^^1n,v&&. Next we consider pairs (C@n,k# ,v) whereC@n,k# is a
k-dimensional weakly self-dual code andvPC@n,k#

' \C@n,k# . In
this caseC@n,k# andv generate a (k21)-dimensional weakly
self-dual codeC@n,k11# containing the two-dimensional spac
^^1n,v&&. The number of choices forC@n,k11# is sn,k11,2.
Every codeC@n,k11# contains 2k k-dimensional weakly self-
dual codes of which 2k21 do not contain the two-
dimensional spacê^1n,v&&. Hence given a vectorv with
even Hamming weight, the number ofk-dimensional weakly
self-dual codes contained inv' is independent ofv. This is
all that is needed to apply the greedy argument used to
tablish the Gilbert-Varshamov bound.

The statement that there are codes meeting the Gilb
Varshamov bound is that given a ratiod/n ~whered denotes
minimum distance!, we may achieve a rate

~n2k!/n>12H2S d

nD . ~29!

The redundancyk/n satisfiesk/n<H2(d/n), so that the
quantum codes achieve a rate

R5~n22k!/n>122H2S d

nD . ~30!

This function is plotted in Fig. 1.

VI. QUANTUM CHANNELS

In order to carry Shannon’s theory of information to th
quantum regime, it is necessary to have some reason
definition of a noisy quantum channel. We will define
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quantum channelW by a probability distributionP on uni-
tary transformationsUW mappingHsig^H env. For any pure
input stateux& the channel produces as output a mixed st
by first obtaining an ensemble of states inHsig^Henv by
applying the transformationUW to ux& with probability dis-
tribution P, and secondly tracing overHenv. While the ini-
tial state ofHenv could be given by an ensemble of states
may also without loss of generality be taken to be a fix
pure state, as the probability distribution given by an e
semble of initial states may be absorbed into the probab
distribution on the unitary transformationUW . The probabil-
ity distribution could also be concentrated entirely in t
inital mixed state ofHenv , and a fixed unitary transformU
be used, but this leads to a slightly less intuitive descript
of the one quantum channel that we later discuss in deta

Actual quantum channels are unlikely to produce out
that differs from the input exactly by the decoherence of
most t qubits, and thus are unlikely to be able to transm
quantum states perfectly using this scheme. However, if
average behavior of the channel results in the decoheren
fewer thant qubits, a channel may still be able to transm
quantum states very well. A measure of the success of tr
mission of quantum states that has previously been succ
ful applied in quantum information theory is fidelity@14,11#.
In this paper, we define fidelity slightly differently from th
definition in Refs.@14#; we make this change as these pre
ous papers discuss channels that transmit some distribu
of quantum states givena priori, whereas we want our chan
nel to faithfully transmit any pure input state. Suppose t
we have a noisy channelW that transmits quantum states
a Hilbert spaceHsig. We define the fidelity of the channel t
be

min
ux&PHsig

E^xuWux&, ~31!

where the expectation is taken over the output of the chan
In other words, we are measuring the fidelity of transmiss
of the pure state transmitted with least fidelity. We could a
measure the fidelity of transmission of a typical state
Hsig; this average fidelity is a quantity which is closer to t
previous definition, and may be more useful in some sit
tions.

Assume that a channelW transmits qubits with a fidelity
of F and is that the decoherence process affects each q
independently, i.e., each the decoherence of one qubit ha
correlation with the decoherence of any other qubit. T
would follow from the assumption that each qubit has a d
ferent environment, and this situation corresponds to me
ryless channels in classical information theory. Th
EW^xuWux&>F for every stateux&PH2 . If the output of our
channel is a pure state, our error-correction proced
RpRf will be successful with probability equal to the leng
of the projection of the state onto the subspace ofH2

n which
results from decoherence of anyt or fewer qubits. Since the
decoherence process for each qubit is independent, we
use the binomial theorem to calculate the probability that
state Wnuy& is projected onto the correctable subspace
H2

n , where uy& is in our quantum codeC. We thus have a
channel which transmits statesuy& with fidelity
e

t
d
-
y

n
.
t
t
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bit
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re

an
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E^yuRpRfW
nuy&>(

j 50

t S n
j DFn2 j~12F ! j ~32!

for all uy& in our quantum codeC. This quantity is close to 1
as long ast/n.12F. Thus, if the fidelityF for each trans-
mitted qubit is large enough, our quantum codes guaran
high fidelity transmission for our encoding ofk qubits. Our
quantum codes will give good results for any channelW that
transmits statesuy&PH2

n well enough thatWuy& has an ex-
pected projection of length at least 12e onto the subspace o
H2

n obtained fromux& by the decoherence at mostt qubits.
Our encoding and decoding schemes then give a channe
the Hilbert spaceH2

k which has fidelity 12e. We will next
use this observation to obtain an upper bound on the cha
capacity of quantum channels.

An upper bound for the amount of classical informati
carried by a quantum channel is given by the Levitin
Holevo theorem@10#. If the output of the channel is a signa
that has density matrixra with probitility pa , the Levitin–
Holevo bound on the information content of this signal is

H~r!2(
a

paH~ra!, ~33!

where r5(apara ~the density matrix for the ensemble o
signals!, and whereH(r)52Tr(r log2r) is the von Neu-
mann entropy. Since quantum information can be used
carry classical information, the Levitin–Holevo bound c
be used to obtain an upper bound for the rate of a quan
error-correcting code.

Consider the following quantum channel discussed in R
@11#; this channel treats each qubit independently. W
probability 12p, a qubit is unchanged, corresponding to t
identity transformation~0 1

1 0!. Otherwise, with each possibility
having probabilityp/3, the qubit is acted on by the unitar
transformation corresponding to one of the three matrice

S 0 1

1 0D , S 1 0

0 21D , or S 0 1

21 0D .

That is, each of the following possibilities has probabili
p/3: the qubit is negated, or its phase is changed, or it is b
negated and its phase is changed. Ift/n.p1e for e.0, the
length projection of the output of this channel onto the su
space ofH2

n with at mostt errors approaches 1 asn grows,
so the quantum error-correcting codes given earlier in
paper guarantee high fidelity. This channel can alternativ
be described as transmitting a qubit error-free with proba
ity 12 4

3p, and producing a random quantum state with pro
ability 4

3p. This description shows that the entropy of th
output of the channel is at leastH2( 2

3p), so by the Levitin–
Holevo theorem an upper bound on the classical informa
capacity of this channel is 12H2( 2

3p). This bound is plotted
in Fig. 1. For this channel, the bound is achievable for cl
sical information, but we believe it is unlikely to be tight fo
quantum information.

Another question that has been studied is: how much
tanglement can be transmitted over a quantum channel@11#.
Since any means of transmitting quantum states with h
fidelity can also be used to transmit entanglement, up
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bounds for entanglement transmission also apply to
quantum information capacity of a quantum channel. F
the above channel, the upper bound proved in Ref.@11# is
H2„

1
21Ap(12p)… for p, 1

2 and 0 ifp> 1
2. This bound is also

plotted in Fig. 1.
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