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Stretchability of Pseudolines is NP-Hard

PETER W. SHOR

ABSTRACT. We prove that the problem of determining whether a pseudoline
arrangement is stretchable is NP-hard. We also use our techniques to find
a symmetrical pseudoline arrangement that is stretchable but not stretch-
able to a symmetrical line arrangement. The NP-hardness result can also
be obtained from a paper by Mnév (Lecture Notes in Math., vol. 1346,
Springer, 1988, pp. 527-544) which implies the stronger result that deter-
mining stretchability is equivalent to the existential theory of the reals. We
give a short explanation of Mnév’s proof, viewed from a complexity theory
point of view, which may be more comprehensible than the original paper
to readers who do not know much topology.

1. Introduction

A line arrangement is the partition of the plane induced by a set of lines
in the plane. A pseudoline is a simple curve in the plane that goes to infin-
ity in two directions. (In other words, a pseudoline is the image of a line
under a homeomorphism of the plane.) A collection of pseudolines is a set
of pseudolines such that any two members of the set intersect at most once,
and cross if they intersect. A pseudoline arrangement is the partition of the
plane induced by a collection of pseudolines. A pseudoline arrangement is
stretchable (or realizable) if there is an arrangement of lines with the same
combinatorial structure. A line or pseudoline arrangement is uniform if no
three lines intersect in a point and no two lines are parallel.

The stretchability of pseudoline arrangements has a long history. In partic-
ular, given a pseudoline arrangement, the question of finding a realization of
it has been studied extensively [BS]. We show that this problem is NP-hard.
We also answer a question of Bokowski and Sturmfels [BS, p. 80] by showing
that there exists a symmetrical pseudoline arrangement which is stretchable,
but which is not stretchable to a symmetrical line arrangement.

The realization space of a pseudoline arrangement is the set of line ar-
rangements realizing this pseudoline arrangement. Mnév [Mn] has shown
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that the topology of the realization space of a pseudoline arrangement can be
the same as the topology of any semialgebraic variety (a semialgebraic variety
is the solution space of a set of polynomial inequalities and equations over
the reals). Mnév’s result also implies that determining the stretchability of
a pseudoline arrangement is equivalent to the existential theory of the reals.
This is stronger than our result.

In §2 of this paper we give our proof of the NP-hardness of determining
if a pseudoline arrangement is stretchable. In §3, we use our techniques to
show that there exists a symmetric pseudoline arrangement which is stretch-
able, but not stretchable to a symmetric line arrangement. In §4, we give
Mnév’s proof that determining the stretchability of a pseudoline arrange-
ment is equivalent to the existential theory of the reals, with one argument
in his proof simplified so as to require less topology than he uses. In §2 and
3, we will be working with pseudoline arrangements—our basic objects will
be lines. In §4, we will (as Mnév does) work with “pseudo-point” arrange-
ments, i.e., a configuration of points for which we know the orientation of
all triples. This is an equivalent problem, as pseudo-point arrangements are
the projective dual of pseudoline arrangements.

2. Proof of NP-hardness

Our proof is based on incidence theorems of projective geometry, namely
Pappus’ and Desargues’ theorems. More specifically, we use the nonrealizable
arrangements of pseudolines that can be obtained from these two theorems.
The Pappus and Desargues configurations are shown in Figures 1 and 2.
The Pappus configuration contains nine lines, each incident with three of
the points, and nine points, each on three of the lines. In the Desargues
configuration, there are ten lines and ten points. (Note that we do not draw
the Desargues configuration in the standard manner.) Pappus’ theorem is
that in the Pappus configuration, if any eight of these triples of lines are
concurrent (or eight of the triples of points are collinear), the last triple must
also be concurrent (collinear). Similarly, Desargues’ theorem is that if nine
of these triples of lines (points) are concurrent (collinear), the last triple must
also be. From either of these configurations, we can obtain a nonrealizable
arrangement of pseudolines. We do this by slightly bending each of the
lines to “go around” the points; that is, we replace each of the points in the
configuration by a small triangle. By bending all lines in the right way (see
Figure 3 and 4), we obtain nonrealizable uniform configurations [Gr].

We prove NP-completeness by reducing a variant of the NP-complete
3-SAT problem to the stretchability problem. The 3-SAT problem is: Given
a Boolean expression in conjunctive normal form containing only three vari-
ables in each clause, is there an assignment of the variables making the expres-
sion true [GJ]? It is easy to show that this problem is still NP-complete if we
require that in each clause either only nonnegated variables or only negated
variables appear. We use this variant of 3-SAT, called monotone 3-SAT
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FIGURE 1. A Pappus configuration.

FIGURE 3. A nonrealizable Pappus configuration.
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FIGURE 6. A Desargues configuration with two “imaginary” lines.
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[GJ, p. 259]. We call a clause positive if it contains only nonnegated variables
and negative if it contains only negated variables. To show monotone 3-SAT
is NP-hard, we can reduce 3-SAT to it by adding a separate variable y; for
each variable x,, and setting x, = y; by adding the clauses x; Vy, Vv 0 and
x_I.VJTI.VT. We then replace X; by y, where needed so as to make all clauses
either positive or negative.

Given a monotone 3-SAT formula, we will construct a pseudoline arrange-
ment which is stretchable if and only if the formula is satisfiable. In the
pseudoline arrangement, clauses will correspond to modified Pappus config-
urations, variables will correspond to certain triples of points, and variables
will be linked to clauses by modified Desargues configurations.

We now look at the Pappus configuration more closely. We let three of the
lines be “imaginary” (see Figure 5), i.e., the lines do not appear in our final
pseudoline arrangement, but are used implicitly in the proof. We call the
three points on each of these “imaginary” lines a triple. In our construction,
each Pappus configuration corresponds to a clause of the Boolean formula
and each of the three triples in the Pappus configuration corresponds to one
of the variables in the clause. Furthermore, the position of the points in the
triples corresponds to the truth (or falsehood) of the variables. Specifically, let
PQR be the triple corresponding to the variable X, , with point Q between
points P and R. We will put point Q above (or on) the line PR if x; is
true and below if X; is false. Unless all three triples of points are collinear,
the Pappus configuration is realizable if and only if not all the variables are
the same; i.e., if in at least one of three triples ABC, DEF , and GHI the
middle point is above the segment between the end points of that triple, and
in at least one of these triples the middle point is below the segment.

In our pseudoline arrangement, we will have many different Pappus config-
urations, one corresponding to each clause. This gives rise to many triples all
corresponding to the same variable. We must connect these triples somehow
so as to ensure that they all give the same value of x;. To do this, we in-
troduce three new points for the variable x; , and make the position of these
three points correspond to the value of x; . We will call these three points
the master triple for x;. We then hook this master triple up to all the slave
triples that correspond to x; in the Pappus configurations. We could do this
by using more Pappus configurations, but for reasons which we will explain
later we use Desargues configurations instead. In a Desargues configuration,
if we take out the two lines ABC and DEF (see Figure 6), the resulting
configuration is realizable only if point B is above line AC and point E is
below line DF or if point B is below and point E is above. Assume we are
dealing with a positive clause. We wish to hook up one of the slave triples in
the clause (corresponding to variable x;) with the master triple for x;. To
do this we introduce a new Desargues configuration with the bottom triple
ABC being the master triple and the top triple DEF being the slave triple.
We now define true and false for a master triple to the opposite of true and
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false for a slave triple; i.e., in a master triple, for a false variable, the middle
point is above the other two points, and for a true variable, the middle point
is below the other two points. This ensures that if the points in the master
triple are false, then the points in the slave triple are false (and vice versa).
Our actual construction will use a modified Desargues configuration having
only the property that if the points in the master triple are false, then the
points in the slave triple are. However, this is exactly what we want: in a
Pappus configuration corresponding to a positive clause, the configuration is
nonrealizable if and only if the three corresponding master triples are in the
false position. For Pappus configurations corresponding to a negative clause,
we will turn the Desargues configuration upside-down, so the Pappus config-
uration is nonrealizable if and only if the three master triples are in the true
position.

The astute reader may have noticed that we are using both Desargues
and Pappus configurations, where intuitively it seems that only one of these
configurations would sufficé. We could probably obtain a proof using just one
of these configurations, but each has properties which make the proof simpler
if we use them both. The advantage of the Desargues configuration is that
it has more degrees of freedom than the Pappus configuration; this makes it
easier to show that a pseudoline configuration corresponding to a satisfiable
formula is stretchable. The advantage of the Pappus configuration is that
there are three disjoint lines contained in a Pappus configuration, one for
each of the variables in a clause, whereas a Desargues configuration contains
only two disjoint lines.

We are now ready to give the construction. First, we describe how to con-
struct the pseudoline arrangement corresponding to a given Boolean formula.
This arrangement will be stretchable if and only if the formula is satisfiable.
During most of the construction of our pseudoline arrangement, we will ac-
tually be constructing a line arrangement. It is only in the last step of our
construction that we will perturb this line arrangement to get a pseudoline
arrangement that may not be stretchable.

To start constructing the arrangement, for each variable we place a triple
of three points (the master for this variable) on a line. All these variables will
be placed near some horizontal line, say y = 0, but in “general position”;
1.e., the only relations between the points are that the three points in a triple
lie on a line. This can be accomplished by putting all the triples down on the
line y = 0 and then perturbing them slightly (see Figure 7). We will later
show how to accomplish this in polynomial time.

We must include the values 1 and 0 among our variables. There are two
ways of doing this: we can either add an extra line in the master triples
corresponding to 0 and 1, which forces the middle point to be above (or
below) the line through the end points, or we can add a set of clauses which
forces one variable to be 0 and another to be 1.
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FIGURE 7. The general layout of our construction, with Pappus configurations
corresponding to positive clauses on top, Pappus configurations correspond-
ing to negative clauses on bottom, and master triples in the middle.

Next, for each positive clause, we place a modified Pappus configuration
above the horizontal line y = 0 which all the master triples lie near, and
for each negative clause we place a modified Pappus configuration below this
horizontal line (see Figure 7). Here, by modified Pappus configurations, we
mean a Pappus configuration missing the three horizontal lines as in Figure
5. Again, although all the triples in these modified Pappus configurations are
nearly horizontal, all these configurations must lie in general position, so the
only relations between points are those implied by the fact that they are all
modified Pappus configurations. The important part of this placement is that
the top side of each of the master triples “sees” the bottom of the triples in
positive Pappus configurations, and the bottom of each of the master triples
“sees” the top of the triples in negative Pappus configurations.

Next, with a “contracted” Desargues configuration (see Figure 8(a)), we
will connect each master variable to the Pappus configurations correspond-
ing to clauses containing it (see Figure 9(a)). A contracted Desargues config-
uration has had points D, G, and I identified and points F, H,and J
identified, so that it contains only six points, as in Figure 8(a).

We have now placed down essentially all the lines that we need in our
arrangement. We will obtain the final arrangement by slightly perturbing
the arrangement that we already have. In our perturbation, we will replace
certain lines by pairs of lines which differ by a small angle. Also, in the
neighborhood of certain points which have many lines passing through them,
we will perturb the lines so that they no longer are all concurrent. We can
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perturb the lines to make only the desired changes because everything is in
general position.

We perturb the configuration by replacing each of the contracted Desargues
configurations by a new, more complete Desargues configuration. Specifically,
we replace the configuration in Figure 8(a), first by the configuration in Figure
8(b), and then by the one in Figure 8(c). Thus, we perturb the two lines b,
(originally BD) and b, (originally BF ) slightly inward, and add the new
points G =b,NAD, H b,NCF,I=bNCD,and J = b, N AF . Next,
line DEF 1s replaced by the two hnes GEJ and IEH. ThlS gives the
configuration in Figure 8(b). Figure 9(b) shows this configuration connected
to a Pappus configuration as it would appear in our construction.

As the points (and Pappus configurations) were placed in general position,
the only triple intersections containing lines b,, b, or DF in the original
Desargues configuration are B, D, E, and F . If the amount we perturb the
lines b, and b, by is sufficiently small, the only place that the arrangement
changes is in the neighborhood of D, E, and F. It is easy enough to see
what happens at D and F (see blown-up neighborhood of D in Figure 10);
all lines previously passing through E still pass through it.

So far, it is possible to make all our perturbations using not just pseudoline
arrangements but actual line arrangements, as in Figure 9(b). The arrange-
ment can still be realized with every triple of points lying on a line and with
all our incomplete Pappus and Desargues configurations being actual Pappus
and Desargues configurations and not perturbed versions of them. This all
changes in the next step.

The last step in our construction is to replace the points / and J by very
small triangles 1,7,1; and J,J,J,, as shown in Figures 8(c) and 9(c). This is
easy to do with pseudolines. In a line arrangement, by Desargues’ theorem,
replacing I and J by triangles in this way either forces point E or point
B to move down. This makes it no longer possible to realize the pseudoline
arrangement while having every triple of points lie on a line, and thus forces
decisions about how to perturb these triples. We will show that it is possible
to find a consistent set of such decisions if and only if the Boolean formula
1s satisfiable.

We will show that the above procedure finds, given a monotone 3-SAT
Boolean formula, a pseudoline arrangement which is equivalent. That is, the
pseudoline arrangement is realizable if and only if the expression is satisfiable.
We still have not quite shown how to produce the pseudoline arrangement in
polynomial time—we must give an algorithm for our initial step of putting
the Pappus configurations and the sets of three points in a row down in
“general position.” As one might expect, this step is not hard. We also have
not yet obtained a uniform pseudoline configuration, which we must do to
show that the problem is NP-complete in the uniform case. There is a trick
discovered by both Mnév and Sturmfels and White [Mn, SW] which we can
apply to turn the above configuration into a uniform one. We will discuss
these steps in more detail later.
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FIGURE 8(a) A “contracted” Desargues configuration. (b) The intermediate
step in expanding a contracted Desargues configuration. (c) The final step:
replacing points / and J with triangles.

What we do now is to show that the above pseudoline configuration is
stretchable if and only if the expression generating it is satisfiable. We first
do the easy direction: if the configuration is stretchable, then the expression
is satisfiable. We later do the hard direction.

Suppose the arrangement is stretchable. Consider a realization of the ar-
rangement. Let the value of a variable X, be true if, in the master triple
corresponding to x;, the middle point is below the line segment joining the
other two points. Let the variable be false if the middle point is above this
segment. If the point is on the segment, we may let the variable be either
false or true. Now if this truth assignment makes the Boolean expression
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FIGURE 9(a) A contracted Desargues configuration in place: ABC is the
master triple and DEF the corresponding slave triple in the Pappus con-
figuration at top. (b) The intermediate step in expanding the contracted
Desargues configuration in (a). (c) Replacing points 7 and J in (b) with
triangles.

false, there must be some clause which is false. If this clause is a positive
clause, say x; VX Vv X, then all the variables in it are false. This means
that, in the master triple corresponding to each of these variables, the middle
point is above (or on) the line segment joining the other two. Since the points
in this master triple are connected by a modified Desargues configuration to
the points in the slave triples in the Pappus configuration corresponding to
this clause, the middle point lies strictly below the line segment joining the
other two points in all three triples in this Pappus configuration. However,
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F1GURE 10. The neighborhood of point D before point
I is replaced by a triangle.

this gives a nonstretchable version of the Pappus configuration. Similarly, a
false negative clause also gives a nonstretchable configuration.

The other direction is harder. Assume that we are given a satisfying assign-
ment of the Boolean formula. We must show that the corresponding pseudo-
line arrangement is stretchable. We start by putting the Pappus configuration
and the master triples down in general position, with the three points in all
triples collinear. We will then show that we can move the middle points
of the master triples up or down, depending on whether the corresponding
variable is false or true, perturb the Pappus configurations by a very small
amount, and add the Desargues configurations linking the slave triples to the
“master” triples to give a realization of the desired pseudoline configuration.
We will do this by proving a series of lemmas showing that we can realize
the configuration by perturbing the original configuration in a certain way.

Before we can proceed with the lemmas, we must give some definitions.
For each line in our configuration, we will call two or three points on it
“anchor points.” We will consider the line to be “fixed” to these points, so
that when these points are perturbed, the line is perturbed. For the Desargues
configurations, the lines, listed by their two anchor points, are AD, AF,
CD, CF, BG, BH, EG, EH . For the Pappus configurations, the anchor
points willbe ADH, AEI, BDG, BFI, CEG,and CFH ; when we move
anchor points in a line having three anchor points, we must make sure that
they remain collinear. We use anchor points to bound the effects of small
perturbations on the overall configuration.

LEMMA 1. There exists an ¢ such that if all anchor points are moved by at
most &, any three lines not originally concurrent retain their relative orienta-
tions.



542 P. W. SHOR

ProoFr. This is clear for any specific three lines. To obtain an & that works
for all lines, simply choose ¢ to be the minimum over all sets of three lines
of the &’s for each set. O

For our next lemma, when we talk about the line arrangement of a De-
sargues configuration, we also include all lines passing through points in the
configuration, although these lines may technically not be in the configura-
tion.

Using this lemma, we will show that there is some ¢, and a corresponding
&, such that if we move all the middle points of the master triples either
up or down by ¢, , depending on whether the corresponding variable in the
satisfying assignment is true or false, then the points of the Pappus configu-
rations can be moved by a distance €, SO as to realize the arrangement. We
first show the existence of these ¢’s for each Desargues configuration sepa-
rately, and then show that we can choose these &’s to be valid for the whole
arrangement. Showing that these &’s exist for each Desargues configuration
is the substance of Lemma 2.

LEMMA 2. For each Desargues configuration connecting a master triple to
a positive clause, the following assertions hold:

(1) For every €, 0 <&, < ¢/2, there exists an &, > 0 such that if point
B is moved up by ¢, to B, ifpoints D, E, and F are moved by less than
&, to D', E', and F', and if point E' is below line D'F', then the points
G, H, I, I, I, Jy, J,, and J; can be added so as to make the resulting
line arrangement of the Desargues configuration be combinatorially the desired
arrangement, even if all the anchor points not in this Desargues configuration
are moved by at most ¢/2 .

(2) For every ¢, 0 < &, < ¢/2, there exists an &, > 0 such that if point
B is moved down by ¢, to B', ifpoints D, E, and F are moved by less
than ¢, to D', E', and F', and if point E' is above line D'F', then the
points G, H, I}, I,, Iy, J,, J,, and J, can be added so as to make the
resulting line arrangement of the Desargues configuration be combinatorially
the desired arrangement, even if all the anchor points not in this Desargues
configuration are moved by at most ¢ /2. _

(3) There exists an €, > 0 such that if point B is moved down by at most
€, to B', then the points G, H, I, I, I, J;, J,, Jy can be added so
as to make the resulting line arrangement of the Desargues configuration be
combinatorially the desired arrangement, even if all the anchor points not in
this Desargues configuration are moved by at most €/2.

PRooF. (1) We will first show (1), assuming that I, I,, and I, are all
identical to point 7, and similarly the J;’s are identical to J, as in Figure
8(b). Let us consider points D' and F' to be fixed. Let us also consider all
anchor points outside the Desargues configuration to be fixed (except on lines
with three anchor points, one of them a point in the Desargues configuration,
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in which case we only fix one of the two outside anchor points). As B was
moved upward to produce B', by Desargues’ theorem no matter where we
place the lines BG and BH, E’' will be below D'F’. However, we can
make E’ approach segment D F' by movmg line BG towards D' and BH
towards F'. By moving only BG towards D’ , wemove E’ to the right, and
by moving only BH towards F', we move E to the left. We can therefore
move these two hnes mmultaneously so as to make E’ approach any point
on segment D'F'. Thus, in some suffi(:lently small neighborhood of E, we
can put E’ anywhere below D'F’. This involves moving points G, H, I,

and J by some amount that we can make arbitrarily small by makmg &,
arbitrarily small. It is easy to see that by making ¢, sufficiently small, the
combinatorial structure of the arrangement near points B, D, E,and F
is unaffected. By Lemma 1, the combinatorial structure cannot be affected
anywhere else. Finally, we can perturb the lines GE and HE by a tiny
amount to make triangles at / and J without affecting the combinatorial
structure of the arrangement elsewhere.

We have now proved (1) with points D', F’, and anchor points outside
the Desargues configuration all fixed. However, by compactness, this implies
(1) even when these points are not fixed: the set of all positions for these
points at most ¢/2 away from their original positions is a compact set, and
as the maximum possible ¢, is a continuous function of these positions, &,
as a function of the positions of these points must be bounded away from 0
on this set.

(2) This proof is very similar to the proof of (1), and will be omitted.

(3) We first place points G and H onlines AD and CF , sufficiently close
to points D and F, respectively, so that the combinatorial configuration is
as in Figure 8(b), even if all the other anchor points are moved by at most
¢/2. Now, for the time being, let us fix all these other anchor points. Suppose
B' is below line AC. Let B” be the intersection of lines AC and B'E.
Since B” is online AC and E ison line DF , by moving point G closer to
D or point H closer to F, we can keep point E fixed and move point B to
B" . Now, note that if we move B” downward along line B'E to point B,
keepmg points G and H fixed, we open small triangles at points / and J
producmg the desired configuration of Figure 8(c). The amount that we can
move B” downward is constrained by what happens to other lines through
D and F (see Figure 11). For example, if we move B” down too far, we
may put /, on the wrong side of a different line through point D (to another
master triple). However, if we keep points B” and B’ close enough to B so
as to move lines BG and BH through a sufficiently small angle, we do not
change the combinatorial configuration by moving lines BG or BH . Thus,
if we make ¢, small enough, the angle B'GB becomes arbitrarily small, and
we obtain the results in (3). Again, by compactness, the proof with anchor
points fixed implies the result with nonfixed anchor points. O
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FIGURE 11. The dotted line must pass below point I, .

Now, we use Lemma 2 to prove the following:

LEMMA 3. In our construction, if the Boolean formula is satisfiable then the
corresponding pseudoline arrangement is realizable.

ProoF. To show the pseudoline arrangement is realizable, we use Lemma
2. Assume we are given a satisfying assignment for the Boolean formula.
Consider a Pappus configuration in our construction. This configuration cor-
responds to a clause of the Boolean formula. Assume that this is a positive
clause, so the Pappus configuration is above the line y = 0. (If it corre-
sponds to a negative clause, the argument is symmetric.) In the satisfying
assignment, this clause must have either one, two, or three variables set to
true, and the rest set to false. If all three variables are set to true, we do not
move any points of the Pappus configuration. If two variables are true and
one false or if two variables are false and one true, we move all the points of
the Pappus configuration by at most €, (which is a quantity that will be de-
termined later) so that for the true slave variables, the middle point is above
the other two, and for the false slave variables, the middle point is below the
other two. (This can easily be done.) Now, we go back to Lemma 2. We
first choose an ¢, smaller than all the ¢,’s of Lemma 2(3) for the Desargues
configurations in our construction. We then move all middle points of the
master triples up or down by exactly €, , depending on whether the vari-
able is false or true. We then choose €, 80 it is smaller than all the g,’s of
Lemma 2(1), (2) for the Desargues configurations in our construction. Now,
by Lemma 2, each Desargues configuration can be perturbed appropriately,
and by Lemmas 1 and 2 none of these perturbations interferes with another
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(all the anchor points have been moved by less than e/2), so we have a
realization of our pseudoline arrangement. O

To conclude the proof that determining stretchability of pseudolines is
NP-hard, we need to show how to construct the pseudoline arrangement in
polynomial time. To do this, we need to show how to lay out the master
triples and the Pappus configurations in general position. One way to do this
is to first lay out all the configurations, but not necessarily in general position,
and then perturb them to obtain a configuration in general position. We do
not need to obtain actual coordinates for the perturbed lines; we merely need
the combinatorial structure of the resulting line arrangement. It thus suffices
to perturb the lines symbolically. To perturb a Pappus configuration, we first
symbolically translate the configuration by an “infinitesimal” amount. This
eliminates all degeneracies between lines in the Pappus configuration and
lines outside it, except for those at points at infinity. To remove these, we
symbolically rotate the Pappus configuration. A similar procedure works to
put the master triples into general position.

We have now shown that determining the stretchability of a pseudoline
arrangement is NP-hard. The arrangements we have constructed, though,
are not uniform. To show that it is still NP-hard with a uniform arrange-
ment, we use a lemma proved both by Mnév and by Strumfels and White on
constructible pseudoline arrangements.

A pseudoline arrangement is constructible if we can produce it by adding
the pseudolines one at a time, while never placing a pseudoline through more
than two points defined by intersections of previously placed pseudolines.

LEMMA 4 [Mn, SW]. Given a constructible pseudoline arrangement &£ one
can find (in polynomial time) a uniform pseudoline arrangement &' which
is stretchable if and only if & is stretchable.

Proor. To produce .#’, consider the order of placing the pseudolines that
shows the arrangement . is constructible. We will examine the pseudolines
in the reverse order, and replace pseudolines that passed through one or
two points previously defined by intersections by either two or four new
pseudolines. When processing a pseudoline L that passes through one point
P defined by intersections of pseudolines, replace it by two pseudolines as in
Figure 12. When processing a pseudoline L that passes through two points
defined by intersections of pseudolines, replace it by four pseudolines as in
Figure 13. This process will produce a uniform pseudoline arrangement & .
Clearly, if . is stretchable, .’ is. If .’ is stretchable, one can produce
a stretching of . by starting with the realization of .%’ and undoing the
process we used to construct .%’, as shown in more detail in [Mn, SW]. O

Now, to show the NP-hardness result applies to uniform arrangements,
we need to show that the arrangement we produced is constructible. If we
first put down the master triples and the Pappus configurations, and then add
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P/\\/ L is replaced by P

FIGURE 12. Making a constructible arrangement uni-
form: replacing a line through one point.

>\/ L Q/\< is replaced by \YX 2¥

FIGURE 13. Making a constructible arrangement uni-
form: replacing a line through two points.

the lines in each of the Desargues configurations in the order ADG, CFH,
EH, EG, CD, AF, BG, BH, we never put a line through more than
two previously defined points. Our arrangement is thus constructible, so by
Lemma 4 realizability of uniform pseudoline arrangements is also NP-hard.

3. A symmetric pseudoline arrangement
not symmetrically stretchable

By using the tools introduced in the previous section, it is easy to produce a
symmetrical pseudoline arrangement that is not stretchable to a symmetrical
line arrangement. We will construct this in much the same manner that we
constructed the pseudoline arrangement from an arbitrary 3-SAT formula
in the previous section. This arrangement will correspond to the formula
(x Vy) A (x Vv y). The only satisfying assignments for this formula are,
clearly, x =1, y=0,and x =0, y = 1. We will construct the symmetric
pseudoline arrangement with a vertical axis of symmetry. To do this, we
put down on the left of the vertical axis, in general position, a master triple
for x, and on the right of the vertical axis, symmetrical to the triple for
x, a master triple for y. On the left of the axis of symmetry, we put in
general position a Pappus configuration both above and below the master
triples. We then put these Pappus configurations symmetrically to the right
of the line (see Figure 14). Since these Pappus configurations correspond
to clauses containing two variables, we add an extra line through one of the
three triples (say, through points DEF in Figure 5). Now, using Desargues
configurations as in the previous section, we connect the master triple for x
to points ABC in the Pappus configurations on the left and to points GHI

O et
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KK
HAK

FIGURE 14. The master triples and Pappus configu-
rations for a symmetrical pseudoline arrangement not
symmetrically stretchable.

in the Pappus configurations on the right. Similarly, we connect the master
triple for y to points GHI in the Pappus configurations on the left and to
points ABC in the Pappus configurations on the right. By the arguments
in the previous section, the resulting pseudoline configuration is realizable
only by configurations in which the middle point of the master triple for x
is above the line through the other two points in this triple and the middle
point of the master triple for y is below the line through the other two
points, or vice versa. Again, by the arguments in the previous section, this
configuration can indeed be realized. Thus, we have a symmetric pseudoline
arrangement which is not symmetrically stretchable.

By using Lemma 4, we can turn this pseudoline arrangement into a uniform
one. All we need to show is that we can apply Lemma 4, and retain the
symmetry. We can do this because in this arrangement the intersection of a
symmetric pair of lines never lies on more than these two lines.

4. A computer scientist’s view
of Mnév’s universality theorem

Mnév [Mn] proved an even stronger theorem. When translated into com-
plexity theory terms, his theorem implies that determining the stretchabil-
ity of pseudoline arrangements is equivalent to the existential theory of the



548 P. W. SHOR

reals. What he actually shows is the following stronger theorem: given any
primary semialgebraic variety (i.e., the solution space of a set of equations
and strict inequalities over the reals) there exists a pseudoline arrangement
whose realization space has the same topology (more precisely, the semial-
gebraic variety and the realization space are stably equivalent). For more
details, see [Mn]. If the semialgebraic variety is empty (i.e., the equations
and inequalities have no solution) the pseudoline arrangement will not be
stretchable. To show that this implies the complexity result, all that is neces-
sary is to show how to find this pseudoline arrangement in polynomial time.
This can be done by carefully following Mnév’s proof [Pe]. We will show
how to find such a pseudoline arrangement using a variant of his proof which
is not as topological, and is thus easier for computer scientists to understand.

Mnév uses an intermediate step to reduce stretchability of pseudoline ar-
rangements to the existential theory of the reals. That is, he reduces the
existential theory of the reals to an intermediate problem, which he then
reduces to the stretchability of pseudoline arrangements. We will call the in-
termediate problem “the existential theory of totally ordered real variables.”
The problem is:

Given a set of variables X1s Xy, X3, ..., X, , a set of equations
on these variables of the forms

xi-i—xj:xk, xl.xszxk,

and the inequalities
l=x <x,<x;<x,<--<x

n?
does there exist a set of real numbers satisfying these equations

and inequalities?

Instead of proving directly that this problem is equivalent to the stretcha-
bility of pseudoline arrangements, we will show that it is equivalent to the re-
alizability of point configurations, as Mnév does. A point configuration is a set
of points together with an orientation on every triple of points (i.e., we know
whether each ordered triple is clockwise, counterclockwise, or collinear). Be-
cause line arrangements and point configurations are related by projective
duality, stretchability of line arrangements is equivalent to realizability of
point configurations. We produce a point configuration which is realizable
if and only if there is a vector of real numbers satisfying our equations and
inequalities.

We first show how to reduce the existential theory of totally ordered real
variables to realizability of point configurations and then we show how to
reduce the existential theory of the reals to the existential theory of totally
ordered real variables.

For the first reduction (to realizability of point configurations) we use
Mnév’s proof. We first place three lines in the plane. We can assume without
loss of generality that these are the x-axis, the y-axis, and the line at infinity.
(Otherwise we apply a projective transformation to obtain these.)
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™

0 xy X+y

FIGURE 15. Addition in Mnév’s construction. The large
circle is the line at infinity.

0 [ X Xy

FIGURE 16. Multiplication in Mnév’s construction. The

large circle is the line at infinity.
We next place points P, P_, ..., Px , corresponding to our variables, on
the x-axis. The x- coordmate of pomt Pr will be the value of the corre-
sponding variable x;. To perform an addition we introduce the set of points
in Figure 15, and to perform a multiplication we introduce the set of points
in Figure 16. The y-coordinate of point B in Figures 15 and 16 will be
different for each equation; we will denote these points by B ,B,, ..., in
the order that we place these equations in the point configuration. Perform-
ing additions and multiplications in a similar manner is an old technique;
Mnév’s contribution was to realize that if the multiplications and additions
are done in this manner, and point B; in Figures 15 and 16 is placed suf-
ficiently closer to y_ than points B,,B,, ..., B,_,, then the resulting line
arrangement has a unique combinatorial structure, and thus the realizability

e
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of the point configuration is equivalent to the solvability of these equations
and inequalities.

The next step is to reduce the existential theory of the reals to the existen-
tial theory of totally ordered real variables. We do this in three steps. The
first is by reducing the existential theory of the reals to the problem: Given
a set of equations and inequalities in the forms

X+ X=X, XX X; =X, X % X,

is there a solution?

One can take any polynomial equation and reduce it to an equation of this
form just by introducing variables for all the intermediate steps and building
the polynomial term by term. For example, the equation x°+ y2 = 2 reduces
to the following set of equations (where new variables are introduced by Vs,
with subscripts standing for the expression which the V’s are supposed to
represent):
+Vyz=2, V;5=Vx4><x,
I/;c4:V2XI/;c2’ V;szxxx, Vyz=y><y.

Constants can be built by starting with 1 and adding and multiplying to ob-
tain integers, dividing to obtain rationals, and solving polynomial equations
to obtain algebraic numbers. The number of such equations is clearly no more
than a constant factor times the size of the input. Thus, we only require the
basic constant 1. For complexity purposes, an inequality of the form x >y
can be taken care of by replacing it with the equation x = y + V2, where
V' is a new variable. For the topological equivalence to hold, it seems that
we need to restrict ourselves to strict inequalities (i.e., primary semialgebraic
varieties).

We now reduce this problem to the same problem of determining if a set of
equations of the above form has a solution, but with the additional restriction
that all the variables be greater than 1. To do this, we replace each variable X;
with a variable V¥, _ , which will be assumed to have the value Xx;+a for some
a, where a can be arbitrarily large. We also must introduce the variables
V,, V2, and I/:H_az , and the relations V,xV, = Voand V + V= Koia? «
We now show that by introducing a few extra equations, we can add and
multiply using only these new variables.

Comparisons are easy, since X, < X; is equivalent to Veia <V, To
. . l . j
add, we replace X+ X=X, with
V\'I-Hz + V\‘J+a = V:\‘,+xj+2a 2 V.\',.+.\'/+2a = V\‘,\.+a + Va'
. . v - .
It is easy to see that if we let x, = Vi +a =V, and similarly obtain x 10 X s

then the above equations imply that X +X;=x,.
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Multiplying is somewhat more complicated. Instead of X; X X; =X, we
use

Vx.+a % Vx +a = V\: X;tax;+ax; +a*>
V X V\:+a = Vax+a ’
V;z * V:Y +a = V;zv +a? >
l'/;z)c,-+az + V;zx +a* = I/;zx +axj+2a2 ?
xixj+ax,+axj+a2 + I/;1+a = V;cx +ax;+ax; +a+24*
a,\¢i+azxj+2a2 + V;c = Vxx +ax,-+axj+a+2a2 .

It is again easy to see that these equations force the desired relation x, = XX,
to hold.
Thus, by replacing variables X; with variables V. xta and replacing equa-

tions and inequalities as descrlbed above, we obtaln an equivalent set of
equations and inequalities. It is easy to see that they are equivalent, because
any solution for the x; can be turned into a solution for ¥’s satisfying V' > 1
for all V’s by 51mply choosing a > |x;] + 1 for all X; . Similarly, one can
obtain the x; from a solution for the Vs by letting x; = V; =V
Finally, we show how to obtain an ordered set of varlables The idea is
essentially the same as the previous one, but somewhat more complicated.
Again, we introduce a new variable, this time 5. We make b larger than
any of the previous variables (these were previously denoted by V. but will

now be denoted by x,, x,,...,x, ). Now, we will work with a variable

V;C L = X+ b' instead of with the original x,’s. Note that we are now
using a dlﬁ"erent power of b for each variable. To obtain the powers of b,
we introduce the equations Vi = VixV, for 1 <i<r, where we will
determine the value of r later. Smce b > X for all x;, we know the ordering
of the variables Vs

To add, multlply, and compare the V e b ’s, we again choose different

powers of b, at most three for each equatlon or inequality. The idea is to
choose several unused powers of b, say 5*, for each equation, and work with

Vx +pe instead of V . The easiest case is again the inequality X, < X;

For this, we choose an unused power of b, say a > n, and 1ntroduce the
equations and inequalities

I/br_tzVi-’_Va_bi’ Vbu= bj+Va B
I/Xi-f-bi—*_Va—bi: V;Ci'f'ba’ V;Cj+bj+Va_bj - x+ba
Vs < Vx.+b“‘

The last inequality will not be in our final set of equations because it is
implicit in the ordering of the variables.
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We need to check that we know the ordering of all the new variables we
Just introduced. This is true: if i < j, then

%a_bj < Vl;u_bi < Va < I/;fi-‘rb“ < VV +b .

If j < i, the order of V,. _pi and V._,; is reversed. Because these variables
are the only ones with a V. term in them, we know their relative ordering
with respect to the other variables in our problem.

To perform addition, suppose we have the equation Xi+X; =X . We first
choose three unused powers of b, say b, b° ,and b7, with n<a<f<yp.
We then introduce the equations

sza = Vi + Vn_bl Py

Ve =Vy+ Vs i,
Vo = Vg + Vi

V +bi + Vn___bl o= V

X; X +b"
I/;cj+bf tVpo_p = I/;cj+b" )

I/)ck+b" + Vg = ka+b" 5

Vi = Voo 4 Ve

v, = V;)/’ + V"'—b"-—bﬂ s

b —a
fo+ba +V x+bf T Vx,+xj+b”+b/’ ’

Vx,.+xj+b"+bﬂ + V[ﬂ’_bu_bﬂ = V:vk+b7' :

The first six equations produce variables of the form V. e instead of the
form VY . - The remaining four do the work of addlng X, and x;. We

know the ordering of the variables, because

Viogs < Vo <V, oy

Py

vt <V <V <V <V,

by <V < ij+b” <V XX +b7 b0

Vs

Multiplication is, as usual, the most complicated operation. As before, we
will choose three unused powers of b, »" bﬂ and b ,and n<a< f <y,
but this time we also require that y = « + B . We now introduce the same
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first six equations as for the case of addition, as well as the equations

Ver + Vo = Vapi»

V.\‘,+b" x I/.'\‘j-f—b/f = V.r\',».\‘j+bﬁ.‘c,+b“.\'J+b:" ?
Vr,,tj+b/',xi+b“xj.+b" + Py = Vx,.xj+b”.\-,.+b“_\-j+3b"’
Vx,+b“ X Vin = Vb"x,.+b’ J
I/;rj+b“ X Vo = Vz)”xj+b"’

Vb"xj+b’ + Vb/’x,+b‘f = Vza"xj+b”,\-,.+2b>' g
I/;c,-xj+b/’x,-+b"xj+3b" = V;J“xj+b/]xi+2b"' + ka+b;"

Again, it is easily checked that we know the ordering of the variables.

By going through the above proof with more care, we can show that if the
semialgebraic variety was defined only by inequalities, then we can produce
an equivalent uniform point configuration. We do this by showing that the
point configuration we obtain is constructible, and then applying Lemma 4
(this time in the dual version for points and not lines, as it is used in [Mn,
SW]).

The above proof also gives the original version of Mnév’s theorem. We
have to show that the solution space of our set of equations on ordered
variables is topologically equivalent to the solution space of the semialgebraic
variety. This follows in the first (or second) reduction if, given a solution
with some value of a (or b), we can always increase a (or b) and still
have a solution. This can easily seen to be the case for a. For &, this is
not clear; however, we can show this holds for » if we introduce some extra
variables and equations. We introduce the extra variables Vi, and V; b
for 1 < i < n, along with the corresponding equations that force them to
have the appropriate values, thus ensuring that el < V;C’_ v < Vi 80
1 < x; < b. We also introduce another equation ensuring that b > 6. Now,
if we choose any b > max(6, Xy> Xy, ..., X,) we can show that for any set
of x;, given a solution, this b leads to a set of Vf(x,., b) which is a solution
of the equations with ordered variables.
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