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Abstract

It is proved that every n×n Latin square has a partial transversal of length
at least n−O(log2

n). The previous papers proving these results [including one
by the second author] not only contained an error, but were sloppily written
and quite difficult to understand. We have corrected the error and improved
the clarity.

1 Introduction

A Latin square of order n is an n×n array of cells each containing one of n distinct
symbols such that in each row and column every symbol appears exactly once. We
define a partial transversal of length j as a set of n cells with exactly one in each row
and column and containing exactly j distinct symbols (this differs from the usual
definition in that n − j extra cells are added). Koksma [5] showed that a Latin
square of order n has a partial transversal of length at least (2n + 1)/3. This was
improved by Drake [3] to 3n/4 and then simultaneously by Brouwer et al. [1] and by
Woolbright [8] to n −√

n. This was in turn improved by Shor [7] to n − 5.53 log2 n
and then by Fu et al. [4], who optimized the parameters in [7] to slightly improve
the constant. One of us (P.H.) discovered a bug in [7] that also affects [4]. This
paper fixes the bug, which was caused by the reversal of inequality (26) in [7]. We
still obtain an n − O(log2 n) lower bound, albeit with a worse constant than in
[7, 4]. This is well below Brualdi’s conjecture of n − 1, and Ryser’s of n for odd n
[2, 6]. The proof in this paper is much the same as in [7] except for the last part of
Section 4. The earlier part of the paper has been revised to improve the clarity of
the presentation.
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Figure 1: Square 1: An example of the operator #. In this case, we replace the cells
(1,1) and (3,3) in the partial transversal on the diagonal with the cells (1,3) and
(3,1) to obtain another partial transversal, also of length 4.

2 The Operation #

Given a partial transversal T of length n−k, with k ≥ 2, one can find another partial
transversal of equal or greater length in the following manner: Choose two cells in
T , say cells (i1, j1) and (i2, j2), such that T −{(i1, j1), (i2, j2)} contains n−k distinct
symbols. These two cells can either contain two distinct duplicated symbols, or two
occurrences of the same symbol, provided this symbol appears in the transversal at
least three times. Replace these two cells with the cells (i1, j2) and (i2, j1). Since we
chose cells containing duplicated symbols, the new partial transversal has length at
least n − k, as each of the symbols in the original transversal is represented in one
of the unchanged cells (see Square 1). We call this operation #, a notation chosen
for its shape.

We now give a motivating example of the use of the operation #, by applying it
to show that every Latin square of order 6 has a partial transversal of length at least
5. Consider a counterexample. Assume for now that the longest partial transversal
has length 4. The square must thus have a partial transversal containing a multiset
of symbols either of the form (a, a, b, b, c, d) or the form (a, a, a, b, c, d). Let us analyze
the case where it contains (a, a, b, b, c, d) (See Square 1). We assume that this partial
transversal is on the diagonal, and call it T0. We can apply # to the cells (1, 1) and
(3, 3) in T0 to get a new partial transversal T1. By our hypotheses, the new cells (1, 3)
and (3, 1) in T1 must contain a symbol chosen from the set {c, d}. By symmetry, we
only need to analyze two cases here: either both symbols are the same or there is
one c and one d. We will analyze the case where they are both c’s. We can apply #
to the cells (1, 3) and (5, 5) in T1 to obtain a new partial transversal T2 (as shown
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Figure 2: Square 2: Another example of the operation #. In this, we replace the
the cells (1,3) and (5,5) in the partial transversal indicated in bold with the cells
containing symbols x and y. If this Latin square had no partial transversal of length
greater than 4, we must have that x ∈ {b, d} and y ∈ {a, d}. Square 3: After two
more applications of #, we know that if the Latin square had no partial transversal
of length greater than 4, it would have to look like this, with the symbols x chosen
from the set {a, b, c, d}.

in Square 2), and we discover that the symbols in (1, 5) and (5, 3) must be chosen
from the set {a, b, d}.

Now, starting from T0 again we can apply # to the cells (1, 1) and (4, 4) to obtain
a partial transversal T3, and we discover that the cells (1, 4) and (4, 1) must both
contain d. (See Square 3.) We can now apply # to the cells (1, 4) and (6, 6) in T3

to obtain T4, and discover that the symbols in (1, 6) and (6, 4) must be chosen from
the set {a, b, c}. We now know that our Latin square looks like Square 3, where the
x’s are symbols from the set {a, b, c, d}. The first row contains five distinct symbols
from the set {a, b, c, d}, a contradiction by the pigeonhole principle.

The case where the longest partial transversal has length less than 4, as well as
the cases where the cell (3, 1) in Square 1 is a d instead of a c and the case where
the diagonal is (a, a, a, b, c, d), can be handled using a very similar analysis, which
we will not present here.

We define a partial Latin square as an n×n square with some of its cells containing
symbols (the others we call empty) such that no symbol appears twice in any row or
column. A partial transversal of an n×n partial Latin square is a set of n non-empty
cells, one from each row and column. We say this partial transversal has length j
if it contains j distinct symbols. An m × m subsquare S ′ of an n × n partial Latin
square S is the set of m2 cells in some subset of m rows and some subset of m
columns of S, where some nonempty cells in S may possibly be replaced by empty
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cells in S ′.

Consider a Latin square with a partial transversal of maximum length n − k,
with k ≥ 2. By applying # to this partial transversal, we will get other partial
transversals, whose length must also be n− k and whose set of symbols is the same
as the first. Applying # repeatedly to these partial transversals, we eventually
will obtain a set of such partial transversals closed under #. All of these partial
transversals contain the same set of n − k distinct symbols, so by ignoring all cells
except those in this set of partial transversals, we obtain a partial Latin square S
containing n − k symbols and a set T of partial transversals of S closed under #.
We will call this pair (S, T ) a partial Latin square satisfying Ak. More formally, we
have:

Definition. An n×n partial Latin square satisfying Ak is a partial Latin square,
together with a nonempty set T of partial transversals of S of length n − k. Each
non-empty cell must appear in at least one of the partial transversals in T . The set
T of partial transversals must form a connected graph under the operation #, and
must be closed under the operation #.

For a partial Latin subsquare (S ′, T ′) satisfying Ak′ of a partial Latin square
(S, T ) satisfying Ak, in addition to the properties contained in the above definition,
we also require an inhertance property. Namely, we require T ′ to be a subset of the
set T restricted to S ′, i.e., that

T ′ ⊆ {T ∩ S ′ : T ∈ T }.

Note that Brualdi’s conjecture (that all Latin squares of order n have a partial
transversal of length at least n − 1) does not appear to rule out the existence of
partial Latin squares satisfying A2, or Ak for k > 2.

If S is an n×n partial Latin square satisfying Ak, we can construct an (n+1)×
(n + 1) partial Latin square S ′ satisfying Ak, by adding an extra row and column
that consist entirely of empty cells except for the (n + 1, n + 1) cell, which contains
a new symbol. The partial transversals in T ′ are those in T augmented by the cell
(n + 1, n + 1). Together with the case analysis on Latin squares of size 6 sketched
earlier, this observation implies that any partial Latin square satisfying A2 must
have size at least 7. In terminology we will be defining later in this paper, this
means that

n2 ≥ 7. (1)

We use the properties of a minimal Latin square satisfying Ak to obtain a set
of inequalities, and then use these inequalities to derive our main result. We first
prove a lemma:

Lemma 1 Given a partial Latin square (S, T ) satisfying Ak such that no subsquare

satisfies Ak, then no cell is contained in all partial transversals in T . That is, given

a non-empty cell (i, j) and a partial transversal containing (i, j), by a sequence of

operations #, one can obtain a partial transversal in T not containing (i, j).
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Proof. Suppose there is a cell (i, j) contained in all partial transversals. We
will call this a fixed cell. Let a be the symbol in this cell. If a appears anywhere else
in the partial Latin square, there is a transversal containing both a’s (the second a
appears in some partial transversal since every non-empty cell does, and this partial
transversal must contain the first a since all partial transversals do). We can then
apply # to this partial transversal to obtain a partial transversal without the fixed
cell, a contradiction. We are left with the case where a does not appear anywhere
else in the partial Latin square. Now, by deleting the row and column containing
the a, one finds a subsquare satisfying Ak, a contradiction of the hypothesis.

We have just proved that no cell in a minimal square satisfying Ak is fixed,
so given a non-empty cell in such a square, there is a partial transversal in T
containing both that cell and another cell with the same symbol (otherwise, the
graph of partial transversals would not be connected by #). We can choose any
filled cell, say (1, 1), and choose a partial transversal T0 through it that duplicates
the symbol in it, say a. Now, let T ∗ ⊆ T be the set of partial transversals containing
at least two a’s, including the one in cell (1, 1). Consider the connected component
of T ∗ which is generated by a sequence of operations # starting with T0. This
component corresponds precisely to the set of partial transversals generated by #
starting from T0−(1, 1) in the subsquare formed by deleting the first row and column.
Taking this set of partial transversals gives an (n− 1)× (n− 1) partial Latin square
satisfying Ak−1. Note that this subsquare may have some empty cells which were
filled in the original n × n square.

Lemma 2 In an (n − 1) × (n − 1) partial Latin square satisfying Ak−1 induced

as described above from an n × n partial Latin square satisfying Ak, the partial

transversals generated by # must have a fixed cell, i.e., there is some cell that appears

in all of these partial transversals.

Proof. We assume without loss of generality that the partial transversal T0

containing two a’s discussed above is the diagonal. Suppose that there are no fixed
cells in the (n − 1) × (n − 1) partial Latin square. Then there must be a partial
transversal T ′

1 in this smaller square which contains the cell (i, i) as well as another
cell with the same symbol. The partial transversal T1 := T ′

1 ∪ (1, 1) must also
appear in the n × n square. Now, in T1, either (1, 1) and (i, i) contain two different
duplicated symbols, or there are at least three a’s in T1 and (1, 1) and (i, i) both
contain a. In either case, we can apply # to T1, deleting the cells (1, 1) and (i, i)
and obtaining the cells (1, i) and (i, 1) (See Square 4). Since i was arbitrary, this
gives us n filled cells in the first row and column of the square, a contradiction since
there are only n − k distinct symbols.

We now extend the analysis of Lemma 2 to prove the following.

Theorem 1 In a partial Latin square satisfying Ak such that no subsquare satisfies

Ak, there are at least nk−1 + k filled cells in each row and column, where nk−1 is the

size of the smallest subsquare satisfying Ak−1.
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Figure 3: Square 4: Illustration for the proof of Lemma 2. By applying # as
shown, we find the first row contains only non-empty cells, a contradiction. Square
5: Illustration for the proof of Theorem 1. If an element c lies in the first row above
the small square and also on the diagonal below and to the right of the small square,
we find a non-empty cell x in the first column, below the small square, as shown.

Proof. Consider a partial transversal T0, which we will assume is along the
diagonal, and a cell within it, say (1, 1), containing a duplicated symbol. Now, hold
this cell fixed, and consider the (n − 1) × (n − 1) partial Latin square satisfying
Ak−1 generated by the operation # as above. Let us assume that m cells of T0 are
not fixed, and are in rows and columns 2 through m + 1. Note that this m × m
subsquare satisfies Ak−1. By the same reasoning as in the above lemma, there is a
transversal with a duplicated symbol in cell (i, i), for all i, 2 ≤ i ≤ m + 1. Applying
#, we find that there is a symbol in cells (1, i) and (i, 1), for 2 ≤ i ≤ m + 1. There
are only m − (k − 1) symbols in the m × m subsquare satisfying Ak−1 containing
rows and columns 2 through m + 1, leaving (k− 1) symbols in (1, i), 2 ≤ i ≤ m + 1,
which are not in the subsquare satisfying Ak−1 (See Square 5). Note that some of
these symbols may appear in the m × m subsquare in the original partial Latin
square, but they do not appear in the set T of partial transversals associated with
this subsquare.

Suppose one of these k − 1 symbols, say c, is in the (1, i) cell. There is a c in
the original partial transversal T0, and since it is not in the subsquare, it must be in
cell (j, j), for some j > m + 1. Moreover, there is a partial transversal of the small
square with a duplicate letter in cell (i, i), say b. (Note this letter could be a, the
same as in cell (1, 1), in which case there are three a’s in the corresponding partial
transversal of the n × n square). We can now apply # to remove the (1, 1) and the
(i, i) cells, and we find that the (1, i) and (i, 1) cells are filled. Now, the c in the
(j, j) cell and the symbol in the (i, 1) are both duplicates, so by applying # again
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Figure 4: The region P in the proof of Theorem 2

we find that the (j, 1) cell and the (i, j) cell are filled. (Again, if both cells (j, j)
and (i, 1) contain c, there are three c’s in the partial transversal.) Thus, we know
that the (j, 1) cell is filled. Since there are at least k − 1 symbols in the (1, i) cells,
2 ≤ i ≤ m + 1, which are not in the subsquare satisfying Ak−1, we can apply the
same process to obtain k−1 filled cells in the first column in or below the (m+2)nd
row. This gives at least m + k filled cells in the first column, since the first m + 1
cells are also filled. Now, m ≥ nk−1, because m is the size of a subsquare satisfying
Ak−1, and nk−1 was the size of the minimal such subsquare. Since (1, 1) was an
arbitrary cell in our original partial transversal, this argument shows that at least
nk−1 + k cells are filled in each row and column.

If we let nk = n be the size of the original partial Latin square satisfying Ak,
then this Theorem shows that

nk ≥ nk−1 + 2k, (2)

since the larger square has nk −k distinct symbols, of which at least nk−1 +k appear
in each row and column.

3 An Inequality

Let Sk be a square satisfying Ak such that no subsquare satisfies Ak. It was shown
in Section 2 that there must be a subsquare satisfying Ak−1, Choose Sk−1 to be
the smallest subsquare of Sk satisfying Ak−1 and, recursively, Sm to be the smallest
subsquare of Sm+1 satisfying Am, until the sequence ends at S2. Let nj be the size
of Sj.

Theorem 2 In Sk, as defined above, for all j < k,

(nk − nj)(2nj + nk−1 − 2nk + 2k − j) ≤ nj(nj − nj−1 − 2j). (3)

Proof. Consider Square 6. We will count the number of filled cells in the
rectangle P in two different ways. First, there are nk − nj columns in P , and since
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each column of Sk has at least nk−1+k filled cells, we have at least nk−1+k−(nk−nj)
filled cells in each column of P , and at least (nk −nj)(nk−1 +nj −nk + k) filled cells
in P .

We will call the symbols in Sj old symbols and those in Sk and not in Sj new

symbols. There are nj − j old symbols and nk − k − nj + j new symbols. There
are nj rows in P . In each row of Sj there are at least nj−1 + j old symbols. Since
there are only nj − j distinct old symbols, this leaves at most nj − j − (nj−1 + j)
old symbols in each row of P , for a total of at most nj(nj − nj−1 − 2j) filled cells
containing old symbols in P .

There are nk−k−nj +j new symbols, and nk−nj columns in P . Thus, there are
at most (nk − nj)(nk − k − nj + j) filled cells containing new symbols in P . Adding
the number of cells with old and with new symbols in P , we get a upper bound for
the number of filled cells in P . Setting this upper bound greater than or equal to
the lower bound, and simplifying, we obtain the inequality (3) above.

4 The Main Result

Suppose we have a Latin square with no partial transversal of length more than
n− l. By the previous sections, we have a sequence n2 < n3 < . . . < nl satisfying the
Inequalities (1), (2), (3), from the previous section. Reiterating these inequalities,
we have that if 2 ≤ i ≤ l and 1 ≤ j < k ≤ l, then

n2 ≥ 7, (1)

ni ≥ ni−1 + 2i, (2)

(nk − nj)(2nj + nk−1 − 2nk + 2k − j) ≤ nj(nj − nj−1 − 2j). (3)

We will now derive the inequality k ≤ 11.053 log2 nk from the Inequality (3).

We first prove the following lemma.

Lemma 3 Either

nj ≤
4

5
nk

or

nj − nj−1 ≥
1

3
(nk − nj−1).

Proof. Letting

dk := nk − nk−1, dj := nj − nj−1, (4)

we have, from (3)

dj − 2j ≥ nk − nj

nj

(2nj − dk − nk + 2k − j). (5)
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The direction of the inequality lets us remove the lower order terms, giving

dj ≥
nk − nj

nj
(2nj − dk − nk). (6)

Now, we assume that nj ≥ 4
5
nk. This gives

dk = nk − nk−1 ≤ nk − nj ≤
1

5
nk, (7)

nk + dk ≤ 6

5
nk, (8)

nk + dk ≤ 3

2
nj. (9)

Combining (6) and (9) gives

dj ≥
1

2
(nk − nj), (10)

By the definition of dj, we have

nj − nj−1 ≥
1

2
nk −

1

2
nj, (11)

so
3

2
nj −

3

2
nj−1 ≥

1

2
(nk − nj−1). (12)

and

nj − nj−1 ≥
1

3
(nk − nj−1), (13)

completing the proof.

Now, suppose that nk < 5
4
nj, so

1

3
(nk − nj−1) ≤ nj − nj−1, (14)

giving

nk − nj ≤
2

3
(nk − nj−1). (15)

Since (15) holds for all j where j < k, and nk < 5
4
nj, by induction we get,

1 ≤ nk − nk−1 ≤
(

2

3

)k−j

(nk − nj−1), (16)

or
k − j ≤ log3/2(nk − nj−1). (17)

Now, suppose in addition that

k − j − 1 > log3/2

nj

4
, (18)

9



then
log3/2

nj

4
< k − j − 1 ≤ log3/2(nk − nj), (19)

nj

4
< nk − nj (20)

5

4
nj < nk, (21)

a contradiction.

If k − j ≥ blog3/2 njc, then since blog3/2 njc > log3/2 nj − log3/2 4 + 1, we have

that (18) holds, implying that nk ≥ 5
4
nj.

We now let k4 = 2, and

ki = ki−1 + blog3/2(nki−1
)c. (22)

By induction, we obtain that for l ≥ ki,

nl ≥
(

5

4

)i+1

, (23)

where the base case follows from n2 ≥ 7 > (5/4)5.

We know that nki−1
< nk for ki−1 < k. So from (22), if ki−1 < k, we have

ki ≤ ki−1 + blog3/2 nkc. (24)

We can now prove the following Lemma. We will specify the exact value of c
later.

Lemma 4 For c ≥ 1/2, either

1

c
log3/2 nk ≥ k

1

2 , (25)

or

c log5/4 nk > k
1

2 . (26)

Proof. If log3/2 nk ≥ ck
1

2 , we have (25). Otherwise suppose that

log3/2 nk < ck
1

2 . (27)

Then from (24), for all ki−1 < k we have

ki < ki−1 + ck
1

2 . (28)

Let j be the minimum integer such that kj ≥ k. Summing (28) over i gives

k ≤ kj < k4 + (j − 4)ck
1

2 , (29)
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which rearranges to

j >
k − k4

ck1/2
+ 4. (30)

This shows that for minimum j such that kj ≥ k we have

j >
k − 2

ck1/2
+ 4 >

1

c
k

1

2 . (31)

Using (23) with i = j − 1 and (31) we obtain

nkj−1
≥

(

5

4

)j

>

(

5

4

)
1

c
k1/2

. (32)

We know that nk > nkj−1
(because k > kj−1). Then

log5/4 nk >
1

c
k

1

2 , (33)

giving (26).

We can now make the left-hand side of the two equations in Lemma 4 equal by

setting c =
√

log 5
4
/ log 3

2
. This gives

1
√

log 5
4
log 3

2

log nk > k1/2, (34)

from which follows:

Theorem 3 Every Latin square has a partial transversal of length at least

n − 11.053 log2 n. (35)

Here 11.053 ≈ (log 5
4
log 3

2
)−1. No serious attempt has been made to optimize

this constant.

As was remarked in [7] the Inequality (3) cannot imply anything better than
n − log2 n, since the sequence nk = 2k satisfies (3). Let us take the opportunity
to remark that Inequalities (1–3) cannot in fact achieve a bound better than n −
O(log2 n). If we let κ = bk 1

2 c and γ = k − κ2, then the sequence

nk = β bκ − α a3κ−γ

for sufficiently large b � a � 1 and β � α satisfies these inequalities and has
growth rate of nk = eO(k1/2).
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