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1 Introduction

The discipline of information theory was founded by Claude Shannon in a truly re-
markable paper [28] which laid down the foundations of the subject. We begin with a
quote from this paper which is an excellent summary of the main concern of informa-
tion theory:

The fundamental problem of communication is that of reproducing at one
point either exactly or approximately a message selected at another point.

Quantum information theory is motivated largely by the same problem, the difference
being that either the method of reproduction or the message itself involves fundamen-
tally quantum effects. For many years, information theorists either ignored quantum
effects or approximated them to make them susceptible to classical analysis; it was only
in the last decade or so that the systematic study of quantum information theory began.
We next give a quote from John R. Pierce which shows roughly the state of quantum
information theory a quarter century ago. In a 1973 retrospective [25], celebrating the
25th anniversary of Shannon’s paper, Pierce says

I think that I have never met a physicist who understood information the-
ory. I wish that physicists would stop talking about reformulating infor-
mation theory and would give us a general expression for the capacity of
a channel with quantum effects taken into account rather than a number of
special cases.

In retrospect, this quote seems both optimistic and pessimistic. It was certainly pes-
simistic in that there are now many physicists who understand information theory, and
I believe that even when Pierce wrote this, there were several who did. Ironically, one
of the first fundamental theorems of quantum information theory was proved in the
same year [17]. On the other hand, Pierce was quite optimistic in that he seems to
have believed that finding the capacity of a quantum channel would be fairly straight-
forward for a physicist with the right background. This has not proven to be the case;
even now, we do not have a general formula for the capacity of a quantum channel.
However, there have been several recent fundamental advances made in this direction,
and I describe these in this paper.

1A large part of this paper is included in the paper “Quantum Shannon Theory,” which will appear in the
IEEE Information Theory Society Newsletter.
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2 Shannon theory

Shannon’s 1948 paper [28] contained two theorems for which we will be giving quan-
tum analogs. The first of these is the source coding theorem, which gives a formula for
how much a source emitting random signals can be compressed, while still permitting
the original signals to be recovered with high probability. Shannon’s source coding the-
orem states that � outputs of a source

�
can be compressed to length ����� ���	��
 ��� �

bits, and restored to the original with high probability, where � is the entropy function.
For a probability distribution with probabilities �� , �� , ����� , �� , the entropy � is����� ���� ��� �� ��� �! ��#"%$'&���)( (1)

where information theorists generally take the logarithm base 2 (thus obtaining bits as
the unit of information).

The second of these theorems is the channel coding theorem, which states that with
high probability, � uses of a noisy channel * can communicate + �  
 �,� � bits reliably,
where + is the channel capacity given by+ �.-0/#1243%57698 � �;: * � ���)� (2)

Here the maximum is taken over all probability distributions on inputs
�

to the chan-
nel, and * � ��� is the output of the channel given input

�
. The mutual information 8

is defined as: 8 � �;:=<>�?� ��� <@�  ��� <BA ��� (3)� ��� ����� ��� <@�  ��� � ( <@� ( (4)

where ��� � ( <@� is the entropy of the joint distribution of
�

and
<

, and ��� <BA ��� is the
conditional entropy of

<
, given

�
. That is, if the possible values of

�
are � � ��� , then

the conditional entropy is��� <CA ���D� � �FEHG � �I�F� � � ��� <CA �J�K� � � � (5)

In this paper, I outline the progress that has been made in extending these formulae
to quantum channels, while also taking a few side detours that address related prob-
lems and results in quantum information theory. I will keep this paper at a fairly low
technical level, so I only sketch the proofs for some of the results I mention.

When the formula for mutual information is extended to the quantum case, two
generalizations have been found that both give capacities of a quantum channel, al-
though these capacities differ in both the resources that the sender and receiver have
available and the operations they are permitted to carry out. One of these formulae
generalizes the expression (3) and the other the expression (4); these expressions are
equal in the classical case.
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3 Quantum mechanics

Before we can start talking about quantum information theory, I need to give a brief
description of some of the fundamental principles of quantum mechanics. The first
of these principles that we present is the superposition principle. In its most basic
form, this principle says that if a quantum system can be in one of two distinguishable
states

A�L�M
and

A�NOM
, it can be in any state of the form P A�L	M!�.QRA�NOM , where P and

Q
are complex numbers with

A P A � �SA QHA � �UT
. Here

AWVXM
is the notation that physicists

use for a quantum state; we will occasionally be using it in the rest of this paper.
Recall we assumed that

A�L	M
and

A�NOM
were distinguishable, so there must conceptually

be some physical experiment which distinguishes them (this experiment need not be
performable in practice). The principle says further that if we perform this experiment,
we will observe

A�L�M
with probability

A P A � and
A�NOM

with probability
A QHA � . Furthermore,

after this experiment is performed, if state
A�L	M

(or
A�NOM

) is observed the system will
thereafter behave in the same way as it would have had it originally been in state

A�L�M
(or
A�NYM

).
Mathematically, the superposition principle says that the states of a quantum system

are the unit vectors of a complex vector space, and that two orthogonal vectors are
distinguishable. In accordance with physics usage, we will denote quantum states by
column vectors. The Dirac bra-ket notation denotes a column vector by

A�Z[M
(a ket)

and its Hermitian transpose (i.e., complex conjugate transpose) by \ Z]A (a bra). The
inner product between two vectors,

Z
and ^ , is denoted \_^ A Z[M�� ^a` Z , where ^]`

is the conjugate transpose of ^ . Multiplying a quantum state vector by a complex
phase factor (a unit complex number) does not change any properties of the system, so
mathematically the state of a quantum system is a point in projective complex space.
Unless otherwise stated, however, we will denote quantum states by unit vectors in a
complex vector space bdc .

We will be dealing solely with finite dimensional vector spaces. Quantum informa-
tion theory is already complicated enough in finite dimensions without introducing the
additional complexity of infinite-dimensional vector spaces. Many of the theorems we
will be discussing do indeed generalize naturally to infinite-dimensional spaces.

A qubit is a two-dimensional quantum system. Probably the most widely known
qubit is the polarization of a photon, and we will thus be using this example in the
remainder of the paper. For the polarization of a photon, there can only be two dis-
tinguishable states. If one sends a photon through a birefringent crystal, it will take
one of two paths, depending on its polarization. By re-orienting this crystal, these two
distinguishable polarization states can be chosen to be horizontal and vertical, or they
can be chosen to be right diagonal and left diagonal. In accordance with the superposi-
tion principle, each of these states can be expressed as a complex combination of basis
states in the other basis. For example,A[ef Mg� Th i A=j�M�� Th i A[k!MA[lm Mg� Th i A=j�M  Th i A[k!M
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AYn opMg� Th i A=j�M�� qh i A[k!MA	r=stMg� Th i A=j�M  qh i A[k!M
Here,

A n ouM
and

A	r s M
stand for right and left circularly polarized light, respectively;

these are another pair of basis states for the polarization of photons. For example,
when diagonally polarized photons are put through a birefringent crystal oriented in
the
k ( j direction, half of them will behave like vertically polarized photons, and half

like horizontally polarized photons.
If you have two quantum systems, their joint state space is the tensor product of

their individual state spaces. For example, the state space of two qubits is bdv and of
three qubits is bxw . The high dimensionality of the space for � qubits, b �zy , is one of
the places where quantum computation attains its power.

The polarization state space of two photons has as a basis the four statesA�kxk{M ( A�kHj|M ( A=j}k!M ( A=j~j�M �
This state space includes states such as an EPR (Einstein, Podolsky, Rosen) pair of
photons Th i � A�k{j|M  A�j�kHMW�D� Th i � AYef lm M  AYlm ef MW� ( (6)

where neither qubit alone has a definite state, but which has a definite state when con-
sidered as a joint system of two qubits. In this state, the two photons have orthogonal
polarizations in whichever basis they are measured in. Bell [3] showed that the out-
comes of measurements on the photons of this state cannot be reproduced by joint
probability distributions which give probabilities for the outcomes of all possible mea-
surements, and in which each of the single photons has a definite probability distribu-
tion for the outcome of measurements on it, independent of the measurements which
are made on the other photon. In other words, there cannot be any set of hidden vari-
ables associated with each photon that determines the probability distribution obtained
when this photon is measured in any particular basis.

I will present here another demonstration of this impossibility of local hidden vari-
ables; namely, the proof involving the GHZ state (named for Greenburger, Horne and
Zeilinger) [14]. Many fewer people have seen this than have seen Bell’s inequalities,
probability because it is much more recent; however, the demonstration for the GHZ
state is in some ways simpler because it is deterministic. From now on, instead of usingA�k�M

and
A=j�M

for qubits, we will use
A)�'M

and
A�T�M

, as these are equivalent and probably
more familiar to our audience. The GHZ state isTh i � A)�t�t��M��.A�TtTtT�M�� � (7)

The thought experiment demonstrating the impossibility of hidden variables involves
measuring each of the qubits in either the C basis �� � � A)��Md� q AWT�Mz� or in the D basis�� � � A���Mt��AWT�MW� . For photon polarization, the C basis corresponds to circularly polarized
light and the D basis to diagonally polarized light. We will first suppose that each of
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the qubits is measured in the D basis. This projects the joint state of our three qubits
onto one of the eight mutually orthogonal vectorsTh � � A=�'M���AWT�Mz� � A���M��.A�T�Mz� � A=�'M���AWT�Mz� � (8)

Let us consider the state formed by taking all plus signs in the superpositions above.
This is equivalentlyTh � � A)�t�'�'M��.A)�t��T�M���A��OT��'M���A��OT'T�M���AWT��'�'M���AWT���T�M���AWTtT��'M���AWTtT'T�M�� (9)

The inner product of this state with the GHZ state (7) is �� , so the probability of ob-
serving the state (9) when measuring all three qubits in the D basis is � �� � � � �v . It is
easy to check that similarly, the probability of observing any of the states of (8) with
an even number of  ’s is �v and that the probability of observing any state of (8) with
an odd number of  ’s is 0.

We now consider measuring two of the qubits in the C basis and one (say the third)
in the D basis. This measurement projects onto the eight basis statesTh � � A���M�� q AzT�Mz� � A���M�� q AWT�Mz� � A���M��.A�T�Mz� � (10)

Here, it is easy to check that if we measure the GHZ state (7) in this basis, we will
always observe an odd number of  ’s.

We can now show that it is impossible to assign measurement outcomes to each of
the qubits independent of the basis that the other qubits are measured in, and remain
consistent with the predictions of quantum mechanics. Consider the following table�����Y�%� T �[�O�Y��� i �[�O�Y������� / G �%���� � � ���'���� � � $Y�O�� � � $Y�O�� � � $Y�O� (11)

The last entry in each row gives the parity of the number of  ’s if the three qubits
are measured in the bases given by the first three entries of the row. Suppose there is
a definite outcome assigned to each qubit for each of the two possible measurement
bases. Since each basis appears for each qubit exactly twice in the table, the total
number of  ’s in the table would thus have to be even. However, the results predicted
by quantum mechanics (the fourth column) are that the total number of  ’s in the table
is odd. This implies that the outcome of at least one measurement on one qubit must
depend on the measurements which are made on the other qubits, and that this must
hold even if the qubits are spatially separated. It can be shown, however, that this
correlation cannot be used to transmit any information between people holding these
various qubits; for example, the probability that a qubit is found to be

�
(  ) is one-

half independent of the measurements on the other qubits, so which measurements are
chosen for the other qubits do not affect this probability (although the outcomes of
these measurements may).
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The next fundamental principle of quantum mechanics we discuss is the linearity
principle. This principle states that an isolated quantum system undergoes linear evo-
lution. Because the quantum systems we are considering are finite dimensional vector
spaces, a linear evolution of these can be described by multiplication by a matrix. It is
fairly easy to check that in order to make the probabilities sum to one, we must restrict
these matrices to be unitary (a matrix � is unitary if ��` � �0  � ; unitary matrices are
the complex matrices which take unit vectors to unit vectors).

Although many explanations of quantum mechanics restrict themselves to pure
states (unit vectors), for quantum information theory we need to treat probability distri-
butions over quantum states. These naturally give rise to objects called density matri-
ces. For an � -dimensional quantum state space, a density matrix is an �¢¡0� Hermitian
trace-one positive semidefinite matrix.

A rank one density matrix £ corresponds to the pure state
A�ZYM

where £ �~A¤ZYM \ Z]A .
Recall \ Z¥A was the complex conjugate transpose of

A�ZYM
, and for most of this paper we

denote \ Z¥A by
Z ` . Density matrices arise naturally from quantum states in two ways.

The first way in which density matrices arise is from probability distributions over
quantum states. Suppose that we have a system which is in state

Z � with probability  � .
The corresponding density matrix is£ � � �  � Z � Z `� � (12)

An important fact about density matrices is that the density matrix for a system
gives as much information as possible about experiments performed on the system.
That is, any two systems with the same density matrix £ cannot be distinguished by
experiments, provided that no extra side information is given about these systems.

The other way in which density matrices arise is through disregarding part of an
entangled quantum state. Recall that two systems in an entangled (pure) state have a
definite quantum state when considered jointly, but each of the two systems individu-
ally cannot be said to have a definite state. Suppose that we have a pure state £�¦�§ on
a tensor product system ¨C¦¢©�¨R§ . If we can only see the first part of the system, this
part behaves as though it is in the state £O¦ �«ª G §!£[¦�§ . Here,

ª G § is the partial trace
operator. Consider a joint system in the state

£ ¦�§ �¬®°¯ �=� ¯ �)� ¯ �)±¯ �z� ¯ ��� ¯ ��±¯ ±z� ¯ ±�� ¯ ±�±
²³ � (13)

In this example, the dimension of ¨ ¦ is 3 and the dimension of ¨ § is the size of the
matrices ¯ �µ´ . The partial trace of £ ¦�§ , tracing over ¨ ¦ , isª G ¦¢£[¦�§ � ¯ �=� � ¯ �=� � ¯ ±=± (14)

Although the above formula also determines the partial trace when we trace over ¨ § ,
through a change of coordinates, it is instructive to give this explicitly:ª G §¶£�¦�§ � ¬® ª G ¯ ��� ª G ¯ �)� ª G ¯ �)±ª G ¯ �W� ª G ¯ ��� ª G ¯ ��±ª G ¯ ±W� ª G ¯ ±�� ª G ¯ ±�±

²³ � (15)
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The final ingredient we need before we can start explaining quantum information
theory is a von Neumann measurement. We have seen examples of this process before,
while explaining the superposition principle and the GHZ non-locality proof; how-
ever, we have not yet given the general mathematical formulation of a von Neumann
measurement. Suppose that we have an � -dimensional quantum system ¨ . A von
Neumann measurement corresponds to a complete set of orthogonal subspaces ·x� , ·�� ,����� , ·�¸ of ¨ . Here, complete means that the subspaces · � span the space ¨ , so that¹ � � � - ·�� � � . Let º»� be the projection matrix onto the subspace ·�� . If we start
with a density matrix £ , the von Neumann measurement corresponding to the set � ·D���
projects £ into one of the subspaces ·¼� . Specifically, it projects £ onto the q ’th subspace
with probability

ª G º]��£ , the state after the projection being º¥�,£'º]� , renormalized to be
a unit vector. A special case that is often encountered is when the ·�� are all one-
dimensional, so that ·�� � ^7�,^ `� , and the vectors ^½� form an orthogonal basis of ¨ .
Then, a vector

Z
is taken to ^½� with probability

A ^ `� Z	A � , and a density matrix £ is taken
to ^ � with probability ^ `� £'^ � .
4 Von Neumann entropy

We are now ready to consider quantum information theory. We will start by defining
the entropy of a quantum system. To give some intuition for this definition, we first
consider some special cases. Consider � photons, each being in the state

A�k[M
or
A=j�M

with probability �� . Any two of these states are completely distinguishable. There
are thus

i � equally probable states of the system, and the entropy is � bits. This is
essentially a classical system.

Consider now � photons, each being in the state
A�k�M

or
AYef M

with probability �� .
These states are not completely distinguishable, so there are effectively considerably
less than

i � states, and the entropy should intuitively be less than � bits.
By thermodynamic arguments involving the increase in entropy associated with the

work extracted from a system, von Neumann deduced that the (von Neumann) entropy
of a quantum system with density matrix £ should be�¿¾�À{� £ ���  ª G £!"�$t&x£�� (16)

Recall that £ is positive semidefinite, so that  ª G £H"%$'&d£ is well defined. If £ is ex-
pressed in coordinates in which it is diagonal with eigenvalues Á�� , then in these coor-
dinates  £!"�$t&x£ is diagonal with eigenvalues  Á	�#"�$t&HÁ�� . We thus see that�¿¾�ÀH� £ ��� �>Â�Ã�Ä=ÅY� Á � � ( (17)

so that the von Neumann entropy of a density matrix is the Shannon entropy of the
eigenvalues. (Recall

ª G £ �JT
, so that

¹ � Á�� �ÆT
.) This definition is easily seen to

agree with the Shannon entropy in the classical case, where all the states are distin-
guishable.
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5 Source coding

Von Neumann developed the above definition of entropy for thermodynamics. One can
ask whether this is also the correct definition of entropy for information theory. We
will first give the example of quantum source coding [20, 26], also called Schumacher
compression, for which we will see that it is indeed the right definition. We consider
a memoryless quantum source that at each time step emits the pure state

Z � with prob-
ability  � . We would like to encode this signal in as few qubits as possible, and send
them to a receiver who will then be able to reconstruct the original state. Naturally,
we will not be able to transmit the original state flawlessly. In fact, the receiver cannot
even reconstruct the original state perfectly most of the time, which is the situation
that is possible in classical communication theory. Unlike classical signals, however,
quantum states are not completely distinguishable theoretically, so reconstructing the
original state most of the time is too stringent a requirement. What we will require
is that the receiver be able to reconstruct a state which is almost completely indistin-
guishable from the original state nearly all the time. For this we need a measure of
indistinguishability; we will use a measure called fidelity. Suppose that the original
signal is a vector Ç �KZ � © Z � ©È������© Z � �
Then the fidelity between the signal

Ç
and the output £ (which is in general a mixed

state, i.e. a density matrix, on � qubits) is É � Ç `)£ Ç and the average fidelity is this
fidelity É averaged over

Ç
. If the output is a pure state

Z
, the fidelity É � Ç ` Z'Z ` Ç �A Ç ` Z�A � . The fidelity measures the probability of success of a test which determines

whether the output is the same as the input.
Before I can continue to sketch the proof of the quantum source coding theorem,

I need to review the proof of the classical source coding theorem. Suppose we have a
memoryless source, i.e., a source

�
that at each time step emits the q ’th signal type,·�� , with probability �� , and where the probability distribution for each signal is inde-

pendent of the previously emitted signals. The idea behind classical source coding is to
show that with high probability, the source emits a typical sequence, where a sequence
of length � is typical if it contains approximately � �� copies of the signal ·�� for everyq . The number of typical sequences is only

i �tÊ 3%576_Ë�ÌW3 � 6 . These can thus be coded in����� ������
 �,� � bits.
The tool that we use to perform Schumacher compression is that of typical sub-

spaces. Suppose that we have a density matrix £ÎÍ�¨ , where ¨ � b ¸ , and we take
the tensor product of � copies of £ in the space ¨ � , i.e., we take £OÏ � Í;b �t¸ . There
is a typical subspace associated with £OÏ � . Let ÐZ � , ÐZ � , ����� , ÐZ ¸ be the eigenvectors of£ with associated eigenvalues Á � , Á � , ����� , Á ¸ . Since

ª G £ �|T
, these Á�� form a proba-

bility distribution. Consider typical sequences of the eigenvectors ÐZ � , where Á�� is the
probability of choosing ÐZ � . A typical sequences can be turned into a quantum state in¨CÏ � by taking the tensor products of its elements. That is, if a typical sequence is ÐZ �ÒÑ ,ÐZ ��Ó , ����� , ÐZ � y , the corresponding quantum state is ^ � ÐZ �ÔÑ!©«ÐZ ��ÓH©.������©ÕÐZ � y . The typi-
cal subspace Ö is the subspace spanned by typical sequences of the eigenvectors. The
subspace Ö has dimension equal to the number of typical sequences, or

i ÊD×�Ø 3%Ùz6 � Ë�ÌW3 � 6 .
We can now explain how to do Schumacher compression. Suppose we wish to
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compress a source emitting
Z � with probability �� . Let the typical subspace corre-

sponding to £YÏ � be Ö , where £ � ¹ � �� Z � Z `� is the density matrix for the source, and
where we are using a block length � for our compression scheme. We take the vectorÇ �KZ � Ñ�© Z � Ó�©Î������© Z � y and make the von Neumann measurement that projects it into
either Ö or Ö¿Ú . If

Ç
is projected onto Ö , we send the results of this projection; this

can be done with "�$t&!� � - Ö � ���0¾�ÀH� £ ����
 ��� � qubits. If
Ç

is projected onto Ö Ú , our
compression algorithm has failed and we can send anything; this does not degrade the
fidelity of our transmission greatly, because this is a low probability event.

Why did this work? The main element of the proof is to show that the probability
that we project

Ç
onto Ö approaches 1 as � goes to Û . This probability is

Ç `=º]Ü Ç . If
this probability were exactly 1, then

Ç
would necessarily be in Ö , and we would have

noiseless compression. If the probability that the state
Ç

is projected onto Ö is
T  �Ý ,then

Ç ` º¥Ü Ç �ÞT  @Ý , and when
Ç

is projected onto Ö , the fidelity between the original
state

Ç
and the final state º¥Ü Ç is thus

A \ Ç A º¥Ü Ç M�A � � � T  �Ý � � .Now, recall that if two density matrices are equal, the outcomes of any experiments
performed on them have the same probabilities. Thus, the probability that the sourceZ � with probabilities  � projects onto the typical subspace is the same as for the sourceÐZ � with probabilities Á � , where ÐZ � and Á � are the eigenvalues and eigenvectors of £ �¹ �  � Z � Z `� . We know from the classical theory of typical sequences that ^ � ÐZ � Ñp©ÐZ � Ó{©.�����4©SÐZ �Òß is in the typical subspace at least

T  �Ý of the time; because the ÐZ � are
distinguishable, this is essentially the classical case, and ^ is in the typical subspace
exactly when the sequence of ÐZ � is a typical sequence.

6 Accessible information

The next concept is that of accessible information. Here, we again have a source emit-
ting state £ � with probability  � . Note that now, the states £ emitted may be density
matrices rather than pure states. We will ask a different question this time. We now
want to obtain as much information as possible about the sequence of signals emitted
by the source. That is, we wish to maximize the mutual information 8 � ��:=<@� where

�
is the variable telling which signal £Y� was emitted, and

<
is the variable giving the out-

come of a measurement on
�

. This gives the capacity of a channel where at each time
step the sender must choose one of the states £O� to send, and must furthermore choose£[� a fraction �� of the time; and where the receiver makes a separate measurement on
each signal sent.

To find the accessible information, we need to maximize over all measurements.
For this, we need to be able to characterize all possible quantum measurements. It
turns out that von Neumann measurements are not the most general class of quantum
measurements; the most general measurements are the positive operator valued mea-
surements, or POVM’s. One way to describe these is as von Neumann measurements
on a quantum space larger than the original space; that is, by supplementing the quan-
tum state space by an ancilla space and taking a von Neumann measurement on the
joint state space.

For a POVM, we are given a set of positive semidefinite matrices à]� satisfying
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¹ � à½� � 8 . The probability of the q ’th outcome is then � �Kª G � à � £ � (18)

For a von Neumann measurement, we take à]� � º¥á4â , the projection matrix onto theq ’th orthogonal subspace ·¼� . The condition
¹ � º¥á4â � 8 is equivalent to the require-

ment that the ·�� are orthogonal and span the whole state space. To obtain the maximum
information from a POVM, we can assume that the à»� ’s are pure states; if there is an àu�
that is not rank one, then we can always achieve at least as much accessible information
by refining that à � into a sum à � � ¹ ´ à �µ´ where the à �X´ are rank one.

We now give some examples of the measurements maximizing accessible informa-
tion. The first is one of the simplest examples. Suppose that we have just two pure
states in our ensemble, with probability �� each. For example, we could take the statesA�k�M

and
A[ef M

. Let us take
Z � � � T ( �Y� and

Z � � �,ã $'äYåO(�ä � � å � . We will not prove it
here, but the optimal measurement for these is the von Neumann measurement with
two orthogonal vectors symmetric around

Z � and
Z � . That is, the measurement with

projectors ^½� � æ ã $'ä ��ç � �Sè� � (=ä � � ��ç � �«è� ��é (19)^7� � æ ã $'ä �  ç � � è� � (=ä � � �  ç � � è� �¤é (20)

This measurement is symmetric with respect to interchanging
Ztê

and
Z � , and it leads to

a binary symmetric channel with error probabilityã $'ä ��ëdì i � å i�í � Ti  ä � � åi � (21)

The accessible information is thus
T  ��� ��  ïî_ð Å è� � .For the ensemble containing

Z � and
Z � with probability �� each, the density matrix

is £ � Ti ë TH� ã $'ä � å ä � � å ã $�äYåä � � å ã $�äYå T  ã $'ä � å í ( (22)

which has eigenvalues �� � ã $�äYå , so the von Neumann entropy of the density matrix is��� ��  òñ�ó=î è� �
. The values of 8 Ä ñ�ñ and � ¾�À are plotted in Figure 1. One can see that the

von Neumann entropy is larger than the accessible information.
Note that in our first example, the optimum measurement was a von Neumann mea-

surement. If there are only two states in an ensemble, it has been conjectured that the
measurement optimizing accessible information is always a von Neumann measure-
ment, mainly because extensive computer experiments have not found a counterexam-
ple [11]. This conjecture has been proven for quantum states in two dimensions [22].
Our next example shows that this conjecture does not hold for ensembles composed of
three or more states.

Our second example is three photons with polarizations that differ by ô �Oõ each.
These are represented by the vectorsZ ê � � T ( �O�Z � � �  �� ( � ±� �Z � � �  �� (  � ±� �
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Figure 1: A plot of the von Neumann entropy of the density matrix and the accessible
information for the ensemble of two pure quantum states with equal probabilities and
that differ by an angle of å , for

�òö å ö ì�÷ i . The top curve is the von Neumann
entropy and the bottom the accessible information.

The optimal measurement for these states is the POVM corresponding to the vectors^p� where ^p�½ø Z � . We take à½� � �± ^p�,^ `� , in order for
¹ � à½� � 8 . If we start with

vector
Z � , it is easy to see that we never obtain ^u� , but do obtain the other two possible

outcomes with probability �� each. This gives 8 Ä ñ�ñ � "%$'& �  T . For these three signal
states, it is also easy to check that the density matrix £ � �� 8 , so � ¾�À �«T . Again, we
have 8 Ä ñ�ñuù ��¾�À .

This leads to a conjecture: that 8 Ä ñ�ñ ö ��¾�À . The correct theorem is somewhat
stronger, and we will shortly state it. The first published proof of this theorem was
given by Holevo [17]. It was earlier conjectured by Gordon [12] and stated by Levitin
with no proof [21].

Theorem (Holevo): Suppose that we have a source emitting a (possibly mixed)
state £[� with probability �� . Letú � �¿¾�À{� � �  � £ � �  � �  � �¿¾�À{� £ � � � (23)

Then 8 Ä ñ�ñ ö ú � (24)

The conditions for equality in this result are known. If all the £O� commute, then
they are simultaneously diagonalizable, and the situation is essentially classical. In this
case, 8 Ä ñ�ñ � ú ; otherwise 8 Ä ñ�ñ ù ú .

11



7 The classical capacity of a quantum channel

One can ask the question: is this quantity 8 Ä ñ�ñ the most information that one can send
using the three states of our second example? The answer is, surprisingly, “no”. Sup-
pose that we use the three length-two codewords

Ztê © Z4ê , Z � © Z � , and
Z � © Z � . These

are three pure states in the four-dimensional quantum space of two qubits. However,
since there are only three vectors, they lie in a three-dimensional subspace. The in-
ner product between any two of these states is �v . One can show that the optimal
measurement is attained by the von Neumann measurement having three basis vectors
obtained by “pulling” the three vectors

Z � © Z � apart until they are all orthogonal. This
measurement gives 8 Ä ñ�ñ �ûT � � ô'ü bits, which is larger than

i � "�$t& �  Tt� bits = 1.170
bits. In fact, 1.369 bits is larger than twice the maximum accessible information at-
tainable by varying both the probability distribution and the measurement on the three
states

Z4ê
,
Z � and

Z � . This maximum is attained using just two of these states, and isT  ��� ��  î_ð Å 3 çtý ± 6� �H� � ô#þ[ÿ4þ . We thus find that block coding lets us achieve a better
information transmission rate than 8 Ä ñ�ñ .Having found that length two codewords work better than length one codewords,
the natural question becomes: as the lengths of our codewords go to infinity, how well
can we do. The answer is:

Theorem (Holevo[18], Schumacher–Westmoreland[27]): The classical capacity
obtainable using codewords composed of signal states £ � , where the probability of
using £ � is  � , is ú � � ¾�À � � � ���£�� �  � � �� � ¾�À � £[� � � (25)

We will later give a sketch of the proof of this formula in the special case where the£[� are pure states. We will first ask: Does this formula give the capacity of a quantum
channel � ?

Before we address this question (we will not be able to answer it) we should give
the general formulation of a quantum channel. If � is a memoryless quantum commu-
nication channel, then it must take density matrices to density matrices. This means �
must be a trace preserving positive map. Here, trace preserving is required since it must
preserve trace 1 matrices, and positive means it takes positive semidefinite matrices to
positive semidefinite matrices. For � to be a valid quantum map, it must have one
more property: namely, it must be completely positive. This means that � is positive
even when it is tensored with the identity map. There is a theorem [16] that any such
map can be expressed as � � £ ��� � � � �,£ � `� (26)

where
� � are matrices such that

¹ � � `� � � � 8 .
A natural guess at the capacity of a quantum channel � would be the maximum ofú over all possible distributions of channel outputs, that is,ú��xÄ���� � ��� -0/#1� 2 â��
	 � Ù â�� ú�#�'� � � £ � � (� � � ���D( (27)

12



since the sender can effectively communicate to the receiver any of the states � � £�� � .
We do not know whether this is the capacity of a quantum channel; if the use of entan-
glement between separate inputs to the channel helps to increase channel capacity, it
might be possible to exceed this ú��xÄ�� . This can be addressed by answering a question
that is simple to state: Is ú��xÄ�� additive [1]? That is, if we have two quantum channels� � and �C� , is ú��xÄ��[� �¢�!©��C� �D� ú��xÄ��Y� � � �	� ú��xÄ��Y� �C� � � (28)

Proving subadditivity of this quantity is easy. The question is whether strictly more
capacity can be attained by using the tensor product of two channels jointly than by
using them separately.

We now return to the discussion of the proof of the Holevo-Schumacher-Westmoreland
theorem in the special case where the £Y� are pure states. The proof of this case in fact
appeared before the general theorem was proved [15]. The proof uses three ingredients.
These are

1. random codes,

2. typical subspaces,

3. the square root measurement.

The square root measurement is also called the “pretty good” measurement, and we
have already seen an example of it. Recall our second example for accessible infor-
mation, where we took the three vectors

Z � © Z � , where
Z � � � ã $'ä � ç �± (=ä � � � ç �± � forq � � ( T ( i . The optimal measurement for 8 Ä ñ�ñ on these vectors was the von Neumann

measurement obtained by “pulling” them farther apart until they were orthogonal. This
is, in fact, an example of the square root measurement.

Suppose that we are trying to distinguish between vectors
Ç � , Ç � , ����� , Ç � , which

appear with equal probability (the square root measurement can also be defined for
vectors having unequal probabilities, but we do not need this case). Let � � ¹ � Z � Z `� .
The square root measurement has POVM elements à»� � ��  � ý � Z � Z `� �¼  � ý � . We have� � à � � �   � ý ��� � � Z � Z `��� �   � ý � � 8 ( (29)

so these à � do indeed form a POVM.
We can now give the coding algorithm for the capacity theorem for pure states. We

choose * codewords
Ç ´ �ÞZ � Ñ{© Z � Óp© V�V�V © Z � y , where the

Z � are chosen at random
with probability  � . We then use the codewords

Ç ´ to send information; we need to
show that each codeword is can be identified with high probability.

To decode, we perform the following steps:

1. Project into the typical subspace Ö . Most of the time, this projection works, and
we obtain �Ç ´ � º Ü Ç ´ , where º Ü is the projection matrix onto the subspace Ö .

2. Use the square root measurement on the �Ç ´ .
13



The probability of error is T  T* ��´=� � A �Ç ´��   � ý � �Ç ´ A � � (30)

The intuition for why this procedure works (this intuition is not even close to being
rigorous; the proof works along substantially different lines) is that for this probability
of error to be small, we need that �D  � ý � �Ç ´ is close to �Ç ´ for most � . However, the �Ç ´
are distributed more or less randomly in the typical subspace Ö , so � � ¹ ´ �Ç ´ �Ç `´ is

moderately close to the identity matrix on its support, and thus ��  � ý � �Ç ´ is close to �Ç ´ .
Note that we need that the number * of

Ç ´ is less than � � - Ö , or otherwise it would
be impossible to distinguish the �Ç ´ ; by Holevo’s bound (24) a � -dimensional quantum
state space can carry at most � bits of information.

8 Quantum teleportation and superdense coding

In this section, we will first describe quantum teleportation, a surprising phenomenon
which is an unusual means of transmitting a quantum state. It is impossible to send
a quantum state over a classical channel. Quantum teleportation lets a sender and a
receiver who share an EPR pair of qubits send two classical bits and use this EPR pair
in order to communicate one qubit [5]. (See Figure 2.)

To perform teleportation, the sender starts with a qubit in an unknown state, which
we take to be P A���M��ÈQRAWT�M , and a shared EPR pair, which we assume is in the state�� � � A��'�'M��CAzT'T�M�� , with the sender holding the first qubit of the EPR pair and the receiver
holding the second qubit. The joint system is thus in the tensor product of these two
states, which is Th i � P A���M���QRA�T�MW� � A=�t��M��.A�TtT�MW� � (31)

Note that the sender has posession of the first two qubits, and the receiver posession of
the third one. Using the distributive law, we can rewrite the above state (31 asTh ��� � A��'�'M���AWTtT�M�� � P A)�'M���QBAzT�MW�� � A��'�'M  AWTtT�M�� � P A)�'M  QBAzT�MW�� � AWT��'M���A��OT�M�� � QRA���M�� P AzT�MW�� � AWT��'M  A��OT�M�� � QRA���M  P AzT�MW�! (32)

The sender can now perform the von Neumann measurement that projects the state
onto one of the four lines of Eq. (32), as the four states�� � � A)�'�'M��.A�TtT�Mz� ( �� � � A�T���M	��A���T�MW�
are all orthogonal. This leaves the receiver with one of the four statesP A��'M���QRA�T�M ( QRA���M¼� P AWT�M (
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Figure 2: A schematic drawing of quantum teleportation. The sender has a qubit in an
unknown state " that he wishes to send to the receiver. He also has half of an EPR
state which he shares with the receiver. The sender makes a joint measurement on the
unknown qubit and half of his EPR state, and communicates the results (2 classical bits)
to the receiver. The receiver then makes one of four unitary transformations (depending
on the two classical bits he received) on his half of the EPR state to obtain the state " .

all of which can be transformed into P A��'M4�>QRA�T�M by the appropriate unitary transform.
The sender needs to communicate to the receiver which of the four measurement out-
comes was obtained (using two bits), and the receiver can then perform the appropriate
unitary transform to obtain the original quantum state.

Quantum teleportation is a counterintuitive process, which at first sight seems to
violate certain laws of physics; however, upon closer inspection one discovers that no
actual paradoxes arise from teleportation. Teleportation cannot be used for superlumi-
nal communication, because the classical bits must travel at or slower than the speed
of light. While a continuous quantum state appears to have been transported using two
discrete bits, by Holevo’s bound (24) one qubit can be used to transport at most one
classical bit of information, so it is not possible to increase the capacity of a classi-
cal channel by encoding information in the teleported qubit. Finally, there is a theo-
rem of quantum mechanics that an unknown quantum state cannot be duplicated [30].
However, the original state is necessarily destroyed by the measurement, teleportation
cannot be used to clone a quantum state.

There is a converse process to teleportation, superdense coding, which uses a shared
EPR pair and a single qubit to encode two classical bits [8]. In this protocol, the sender
and receiver use the same operations as teleportation, but reverse their roles; the sender
performs the unitary transformation and the receiver performs the measurement. (See
Figure 3.)
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Figure 3: A schematic drawing of superdense coding. The sender can communicate
two classical bits to the receiver using one qubit and a shared EPR pair. Here, the
sender makes the same unitary transformation that the receiver would make in quantum
teleportation, and the receiver makes the joint measurement that the sender would make
in quantum teleportation.

9 Other results from quantum information theory

In this final section, I briefly survey some other results of quantum information theory
which were unjustly neglected by the previous sections of this paper.

Using teleportation, the sender can send the receiver qubits over a classical channel
if they possess shared EPR pairs. Thus, shared EPR pairs (an instance of quantum
entanglement) can be seen as a resource that lets these two parties send quantum in-
formation over a classical channel, a task that would otherwise be impossible. This
leads to the question: how do you quantify entanglement? If two parties have � copies
of an entangled state £ , how many EPR pairs does this let them share? We will let
the two parties use classical communication and perform local quantum operations on
their own states, but no quantum communication and no quantum operations on the
joint state space will be allowed.

If £ is a pure state, then the answer is known and quite nice [4]. Let the two parties’
quantum state spaces be

�
and ¯ . Then if £ Í � © ¯ is a pure state, � copies of £ can

be made into ��� ¾�À � ª G ¦D£ ���;
 ��� �x� ��� ¾�À � ª G §H£ ���;
 ��� � (33)

nearly perfect EPR pairs, and vice versa, where the fidelity of the actual state with the
desired state goes to 1 as the block length � goes to infinity.

If £ is not a pure state, the situation becomes much more complicated. In this case,
we can define entanglement of formation ( à$# ), which is asympotitically the number
of EPR pairs that we need to form £ ; and distillable entanglement ( à&% ), which is
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asymptotically the number of EPR pairs which can be created from £ . If £ is pure, then
these two quantities are equal, but this does not appear to be true if £ is mixed.

Much like the classical capacity of a quantum channel, there is a nice expression
which would be equal to the entanglement of formation if it could be proved to be
additive. We call it the one-shot entanglement of formation, and it is the minimum
average entanglement over ensembles of pure states whose density matrix is £ . That is,à'#!	 � � £ �D� - � �( â 2 â Ù â � Ù � �  � �¿¾�ÀH� ª G ¦ £ � � � (34)

We now give another capacity for quantum channels, one which has a capacity
formula which can actually be proven. Suppose that we have a quantum channel � .
Recall that if � is a noiseless quantum channel, and if the sender and receiver possess
shared EPR pairs, they can use superdense coding to double the classical information
capacity of � . If � is a noisy quantum channel, using shared EPR pairs can also
increase the classical capacity of � . We define the entanglement assisted capacity, +') ,
as the quantity of classical information that can asymptotically be sent per channel use
if the sender and receiver have access to a sufficient quantity of shared entanglement.

Theorem (Bennett, Shor, Smolin Thapliyal [6, 7]): The entanglement assisted ca-
pacity is+*) � � ����->/#1Ù�+-, Ï/. �10 � �

ª G�2 � �ï©43 � £ �)� �10 � �
ª G . � ��©43 � £ �  �10 � �)� ��©43

� £ � (35)

where 5 and 6 stand for receiver and sender, respectively. Here £ is maximized over
pure states on the tensor product of the input state space ¨ � b c of the channel and
a quantum space 6 (which may be assumed also to be of dimension � ) that the sender
keeps.

The quantity being minimized in the above formula (35) is called quantum mutual
information, and it is a generalization of the expression for mutual information in the
form of Eq. (4). The proof of this result uses typical subspaces, superdense coding,
the Holevo-Schumacher-Westmoreland theorem on the classical capacity of a quantum
channel, and the strong subadditivity property of von Neumann entropy.

Finally, we briefly mention the problem of sending quantum information (i.e., a
quantum state) over a noisy quantum channel. In this scenario, several of the theorems
that make classical channel capacity behave so nicely are not true. Here, a back channel
from the receiver to the sender increases the quantum channel capacity, leading to two
quantum capacities, 79� where the receiver has a classical back channel from himself
to the sender, and 7 ö 7 � , where all communication is from the sender to the receiver
over the noisy quantum channel � . There is a conjectured capacity formula for 7 . It is
essentially the last two terms of the expression (35) for entanglement-assisted capacity7 � � ��� " � -�98;: ->/41Ù�+Y3<, Ï/. 6 y �10 � �

ª G . � �©=3 � £ �  �10 � �=� �©=3 � £ � (36)

where £ , ¨ and 6 are defined as in (35). The quantity being maximized is called the
coherent information. We now need to take the maximum over the tensor product of �
uses of the channel, and let � go to infinity, because unlike the classical (or the quan-
tum) mutual information, the coherent information is not additive [10]. The quantity
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(36) is an upper bound for the quantum capacity of a noisy quantum channel � [2],
and is conjectured to be equal to this capacity [19].

There are many more results in quantum information theory, including several large
areas that I have not discussed at all. I have not mentioned quantum error-correcting
codes, which are the tools one needs to send quantum information over a noisy channel
[13]. I have also not mentioned quantum cryptography, in connection with which there
exist several recent security proofs [9, 23, 24, 29], and associated results on tradeoffs
between disturbing a quantum state and extracting information from it. Finally, I have
not mentioned a large literature on entangled quantum states shared among more than
two parties. I hope that this paper stimulates some readers to learn more about quantum
information theory.
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