
Polynomial Codes

Shan-Yuan Ho

April 24, 2010

In the last section, we saw that for arbitrary linear codes, we required an en-
coder/generator matrix G to specify the code. For single error correction, the
parity check matrix H was determined from G and used in the decoding process.
A special class of linear codes are polynomial codes. For correcting single errors,
one big advantage of polynomial codes is that specifying only the first row of the
encoder/ generator matrix G is sufficient to describe the entire code.

Algebraic coding theory is based on the structure of finite fields, which we have
studied previously. We need to know a bit more of algebra for the error correcting
codes we are about to study, so we first discuss them.

1 Polynomial Rings

Denote the finite field (p,+, ·) as GF (p). A polynomial over a field GF (p) is of the
form

f(x) = c0 + c1x + c2x
2 + · · · cn−2x

n−2 + cn−1x
n−1 (1)

where the coefficients c0, c1, c2, . . . , cn−1 are elements of GF (p).

A monic polynomial is a polynomial where the highest order term cn−1 equal to
1. A monomial is a polynomial with only one term and has the form xn for some
integer n ≥ 0.

Polynomial Rings are analagous to the ring of integers. A polynomial p(x) is divisible

by a polynomial q(x) if there exists a polynomial r(x) such that p(x) = q(x)r(x).
The polynomials q(x) and r(x) are also called factors of p(x). A polynomial p(x)
that is only divisible by α or αp(x) for some α ∈ GF (p) is called an irreducible

polynomial. A prime polynomial is a monic irreducible polynomial of degree at least
1. In other words, a prime polynomial cannot be factored into two polynomials of
smaller degree.

Primality depends on the field that the coefficients are defined over. For example,
1 + x2 is prime if the coefficients are defined over the rationals. However, if the

1

coefficents are from the binary field GF (2), then 1 + x2 is not prime because it
factors into (1 + x)(1 + x).

Recall that a primitve element α ∈ GF (q) is such that every element in the field
can be expressed as a power of α, so primitive elements are useful for constructing
fields. Similarily, a primitive polynomial p(x) of degree r with coefficients in a field
F has the property that the remainders of monomials upon dividing by p(x) include
every non-zero polynomial of degree up to r − 1. For every degree, there is at least
one (in fact, there are generally many) primitive polynomials of that degree over
GF (q).

2 Single Error Correcting Polynomial Codes

For linear codes, we represented our messages, codewords, and received messages as
vectors. We will now represent these vectors as coefficients of polynomials defined
over the binary field GF (2) (that is, 0 + 0 = 1 + 1 = 0 and 0 + 1 = 1 + 0 = 1). An
example of polynomial addition and multiplication is as follows. The addition of
binary sequences 101 + 110 is represented as (1+x2)+(1+x) = x+x2 which is 011.
The multiplication of sequences 1011×11 gives (1+x2+x3)×(1+x) = 1+x+x2+x4

which is 11101.

Our message m(x) is assumed to be have k binary bits, which we will represent
as a polynomial of degree k − 1. The j-th bit is the coefficient of xj−1 for each j,
1 ≤ j ≤ k. The codeword c(x) for each message m(x) is generated by multiplying
m(x) by a fixed generator polynomial P (x). If P (x) has degree r, then the codeword
has length n = k + r.

c(x) = m(x)P (x) =
n∑

i=1

cix
i (2)

This encoding operation is a linear code since [m(x) + m′(x)]P (x) = m(x)P (x) +
m′(x)P (x).

The basis for this code is the set of monomials 1, x, x2, x3, . . . , xk, which corresponds
to the binary sequences (100 · · · 0), (0100 · · · 0), (0010 · · · 0), . . . , (00 · · · 001). These
are the weight 1 message words. To encode a monomial xj , we multiply it by P (x)
and notice that it merely increases all the exponents of P (x) by j.

The matrix form of a polynomial code is that each row is a cyclic shift (one step
to the right) of the previous row, since the lower row is x times the previous row.
Thus, to specify the generator matrix of this linear code, all we need to know is the
first row, which is P (x). We can see such an example below for a (7, 4) code.

2

Since our code can correct at most one error, we will assume our received sequence
has either 0 errors or 1 of the n bits in error. If there are 2 or more errors, then we
are doomed. We will represent the error by the monomial e(x) where

e(x) = xj 1 ≤ j ≤ n (3)

if the bit error occurred in the j-th bit position of the received sequence r(x). If no
errors occurred, then e(x) = 0. Thus,

r(x) = c(x) + e(x) = m(x)P (x) + e(x) (4)

We then divide r(x) by P (x) to retrieve message m(x). Suppose there is one error
in the j-th position. Then upon dividing r(x) by P (x), we get

Rem[r(x)] = Rem[e(x)] = Rem[xj] (mod P (x)) (5)

because c(x) is divisible by P (x).

We will be able to determine j, the bit position in error, if and only if each monomial
xj in the code has a unique remainder upon dividing by P (x). Recall that with
binary field F , there are 2r − 1 non-zero polynomials of maximum degree r − 1.
If we use a primitive polynomial as the generator polynomial of a code of length
n = 2r − 1, then every non-zero remainder will map to the remainder of some
monomial. Note that this means any codeword of length 2r − 1 produces the same
remainder as some monomial. Therefore, it is within distance 1 of a codeword. This
implies that our polynomial code is a perfect single error correcting code!

Finding a perfect single error correcting polynomial code with r check bits is equiv-
alent to finding a primitive polynomial of degree r.

3 The Generator Polynomial P (x)

We now investigate how to find the generator polynomials of perfect single error
correcting codes. This means that the polynomials must be primitive polynomials.

By convention, we mapped a binary sequence to a polynomial from left to right. We
could also have mapped the sequence in reverse from right to left. The reverse of the
binary sequence 100101 is 101001. The corresponding polynomial of our sequence is
1+x3 +x5 and its reverse polynomial is 1+x2 +x5. The properties of primality and
primitivity are preserved for reverse polynomials. In other words, if a polynomial is
prime, its reverse is also prime. The reverse polynomial of a primitive polynomial
is also primitive. Homework: prove this.

3

Table 1: Remainder Table for 1 + x + x2

Monomial Remainder (mod p(x) = 1 + x + x2)

1 1

x x

x2 1 + x

x3 1

• Primitive polynomials of degree 1. There are exactly two of them, namely, x

and x+1. Multiplying any message by x merely translates the entire message
by one location and places a zero at the begininng, which is not very useful
in error correction. Note that 1 + x is the factor of any polynomial with an
even number of terms, since P (1) = 0. Thus, 1 is a root of the polynomial
and 1 − x (same as 1 + x) is a factor of the polynomial.

Thus, multiplying any message by (1 + x) separates the codewords to a mini-
mum distance of 2. This means that it can detect one error but cannot correct
it. The code generated from this generator polynomial P (x) is called a parity

check code.

• Primitive polynomials of degree 2. There must be a constant term and a
quadratic term, otherwise it would be divisible by x. It must also have an
odd number of terms, otherwise it would be divisible by 1 + x. Thus, there is
only one primitive polynomial of degree 2, namely, 1 + x + x2. Its remainder
table is

• Primitive polynomials of degree 3. There are exactly 2 of them, 1+x+x3 and
1 +x2 +x3 and the reverses of each other. They are generator polynomials of
a n = 7 bit single error correcting code for message length k = 4.

• Primitive polynomials of degree 4. There must be a constant term and an odd
number of terms. 1 + x2 + x4 = (1 + x + x2)2 and (1 + x + x2 + x3 + x4) are
not primitive. There are two polynomials left, (1 + x + x4) and (1 + x3 + x4),
which are primitive and generate perfect codes of length n = 24 − 1 = 15 bits.

By similar procedures, we can find prime and primitive polynomials of higher de-
grees; (i) write down all the polynomials of the degree that have a constant term
and an odd number of terms; (ii) remove all polynomials divisible by lower degree
polynomials; (iii) generate the remainder tables of the remaining polynomials and
see if it is primitive. Primitive polynomials exist for every degree over every finite
field.

To test whether a polynomial is primitive, we can compute the remainder table. This
is a table giving, for each monomial from x0 = 1 and x2d

−2. One way to do this
would be to use long division to find the remainder when each of these polynomials

4

Table 2: Remainder Table for 1 + x2 + x3

Monomial (mod p(x) = 1 + x2 + x3)

1 1

x x

x2 x2

x3 1 + x2

x4 1 + x + x2

x5 1 + x

x6 x + x2

x7 1

Table 3: Encoding Matrix G for p(x) = 1 + x2 + x3

Power of x 0 1 2 3 4 5 6

1 0 1 1 0 0 0

G = 0 1 0 1 1 0 0

0 0 1 0 1 1 0

0 0 0 1 0 1 1

is divided by the generator polynomial p(x). There is, however, a much better way
of doing this. Since a row in the remainder table is the remainder of xj, and the
previous row is xj+1, each row will be the remainder of the previous row after it is
multiplied by x. This means, for example, if we are computing the remainder table
for p(x) = 1 + x2 + x3, to obtain row i, we take the previous row and multiply by
x. If there was an x2 in the previous row, then we replace the resulting x3 term
by 1 + x2. This means that each entry in a given row is a sum (mod 2) of certain
terms in the previous row, a formula we can easily set up in a spreadsheet.

4 Examples of Polynomial Codes

Suppose 1101101 was received. We add the remainders of the powers of x in this
sequence using our monomial remainder table. Alternatively, we can divide r(x) =
1+x+x3 +x4 +x6 by p(x) = 1+x2 +x3 and look at the remainder. In both cases,
we get 1 + x + x2 which is the remainder of the monomial x4. Thus, the 5th digit
is in error. We correct it and the codeword is 1101001. Upon dividing 1101001 by
1011, we get 1111, the message.

We have now seen that polynomial codes are special cases of linear codes. From a

5

generator polynomial P (x), we can generate the encoding matrix with cyclic shifts,
then we can transform this encoding matrix to [I P] form through linear operations,
and then compute the parity check matrix H for our linear code. Alternatively, we
can divide our received sequence by P (x), find the remainder and the associated
monomial from the table of remainders. These two operations are exactly the same.
The parity check matrix H is the remainder table. Multiplying by H is equivalent to
computing the remainder of r(x) by addition. Comparing the result to remainders
of monomials and the rows of H is the same comparison. Homework problem:
Convince yourself of this.

For a one-error-correcting polynomial code, we encode by multiplying the message
m(x) and our generator polynomial p(x) to get a codeword c(x) = m(x)p(x). For
this to correct one error, we need that the degree of c(x) is at most 2d − 2, as the

remainders of x0 and x2d
−1 are equal, and thus the code cannot distinguish between

these two errors. The degree of p(x) is d, and so the degree of m(x) can be at most
2d − 2 − d. Since the number of coefficients of a polynomial is one more than its
degree, these codes encode 2d − d− 1 message bits into 2d − 1 bits, and correct one
error. These are exactly the same parameters as the Hamming codes we discovered
by considering matrices in the previous lecture, and in fact, they are indeed exactly
the same codes.

5 More on Finite Fields and Polynomials

In preparation for the next section on multiple error correcting codes, we will need
a few more things about polynomials over finite fields.

When we computed polynomials (mod p(x)), we have imposed the condition that
p(x) = 0. We would like to know if higher powers of x also satisfy this condition,
i.e., if p(x2) = 0 or p(x3) = 0, and so forth. The motivation will be apparent in the
next section on BCH codes.

Note that if p(x) = 0, then p(x2) = 0. Since the cross terms of [p(x)]2 all disapper
(2=0), we have [p(x)]2 = p(x2) = 0. Similarly, we can also show that x obeys all
the equations that x2 does.

If p(x) = 0, then we can find an equation which x3 obeys by the following procedure.

• Form all the powers of x3j for j up the degree of p(x).

• Compute their remainders.

• Sum the remainders and eliminate all powers in those remainders.

• The equation left will be obeyed by x3.

Similarily, we can find an equation obeyed by any power of x. Let’s see this via an
example.

6

Table 4: Remainder Table

Monomial p(x) = 1 + x + x4

1 1

x x

x2 x2

x3 x3

x4 1 + x

x5 x + x2

x6 x2 + x3

x7 1 + x +x3

x8 1 + x2

x9 x +x3

x10 1 + x + x2

x11 x + x2 + x3

x12 1 + x + x2 + x3

x13 1 + x2 + x3

x14 1 +x3

x15 1

Example 2: p(x) = 1 + x + x4

Given p(x) = 0, we attempt to find q(x) = 0 such that q(x3) = 0. For the first step,
we have Rem(x6) = x2 +x3 and Rem(x9) = x+x3 and Rem(x12) = 1+x+x2 +x3.
For the next step, we eliminate x and x2 to get Rem(x6 + x9 + x12) = 1 + x3. This
implies Rem(1 + x3 + x6 + x9 + x12) = 0. Therefore, y such that y = x3 obeys

1 + y + y2 + y3 + y4 = 0 (6)

Thus, q(x) = 1 + x + x2 + x3 + x4.

Suppose we have p(x) and wish to find a w(x) = 0 such that w(x5) = 0. We have
Rem(x5) = x + x2 and Rem(x10) = 1 + x + x2. So, 1 + x5 + x10 has remainder 0.
This implies that z = x5 obeys the equation 1+z+z2 = 0. Thus, w(x) = 1+x+x2.

Since x2 always obeys the same equation as x, then x4 and x8 must also obey the
same equation. Likewise, x3, x6, x12, x24 = x9 all must obey the same equation,
Similarily for the other powers. We can find all the equations and all the powers
which obey the equations in the table below.

7

Table 5: p(x) = 0 and p(xj) = 0

power Equation for p(x) satisfied power

1, 2, 4, 8 1 + x + x4 = 0

3, 6, 9, 12 1 + x2 + x3 + x4 = 0

5, 10 1 + x + x2 = 0

7, 11, 13, 14 1 + x3 + x4 = 0

0 1 + x = 0

There are two fundamental facts about the linearity of remainders that are very
useful in computation. We can find remainders by matrix multiplication and also
by long division. The two facts below say that we can find remainders by adding the
remainders of the monomials and we can find remainders of products by multiplying
their remainders.

Rem[a(x) + b(x)] = Rem[a(x)] + Rem[b(x)] (7)

Rem[a(x) b(x)] = Rem[a(x)] Rem[b(x)] (8)

In conclusion, we have seen that if the generator polynomial is primitive, then
the code generated will be a perfect single error correcting code of length n =
2r − 1. Each codeword is an n bit length string corresponding to polynomials
divisible by p(x). To correct one error, represented as a monomial, we compare the
remainder of the received polynomial r(x) upon dividing by p(x) and compare with
the remainders of the monomials in our remainder table.

8

