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First, we introduce some notation...

An essential spanning forest of an infinite
graph G is a spanning subgraph F of G, each
of whose components is a tree with infinitely
many vertices. For simplicity, we fix G = Zd.
The number of topological ends of an infinite
tree T is the maximum number of disjoint semi-
infinite paths in T .

Ω: the set of essential spanning forests of G.

FH: the set of edges of F contained in a sub-
graph H of G.

F: the standard product σ-algebra (i.e., the
smallest σ-algebra in which the functions F →
FH are measurable).

An shift-invariant measure on (Ω,F) is ergodic

if it is an extreme point of the set of shift-
invariant measures on (Ω,F).



and some more notation...

µG: the weak limit of the uniform measures

on spanning trees of Gn, where Gn are any

increasing sequence of subgraphs of G whose

union is G. This limit exists independently of

the choice of Gn and is translation invariant

and ergodic (Pemantle and Benjamini, Lyons,

Peres, Schramm).

Write Λn = [−n, n]d. The specific entropy

(a.k.a. entropy per site) of µ, which we de-

note Ent(µ), is

− lim
n→∞ |V (Λn)|−1 ∑

µ({FΛn = Fn})

logµ({FΛn = Fn})
where the sum ranges over all spanning sub-

graphs Fn of Λn for which µ({FΛn = Fn}) 6= 0.

This limit always exists. (Can be proved with

subadditivity, or by citing more general results,

e.g., Ornstein and Weiss.)



and state the main result...

THEOREM: The measure µG is the unique

ergodic probability measure on (Ω,F) with max-

imal specific free entropy. (In fact, theorem

holds for any amenable and quasi-transitive G.)

Burton and Pemantle (1993): proved this when

G = Zd (and slightly more generally). High-

lighted case d = 2, where result was equivalent

to uniqueness of maximal entropy measure on

domino tilings of the plane (perfect matchings

of Z2).

Lyons (2002): discovered error in proof of Bur-

ton and Pemantle; asked about general amenable,

quasi-transitive graphs (our result).



and recall some background results.

BACKGROUND FACT 1 (BP, L, P): The
measure µG has maximal specific entropy.
Moreover, Ent(µG) is the limit of the entropy-
per-site of the uniform measure on spanning
trees of Λn.

BACKGROUND FACT 2 (BLPS, BP, P):
Partially-wired-boundary USTs converge to
µG: Let Gn → G and for each n, consider any
equivalence relation on the boundary vertices
of Gn, and let G′n be the graph obtained from
Gn by identifying equivalent vertices. Then the
uniform measures on spanning trees of G′n con-
verge weakly to µG. In particular, this holds for
both the wired boundary (all boundary ver-
tices identified) and free boundary (no bound-
ary vertices identified).

BACKGROUND FACT 3 (BLPS, BK, P):
If µ is shift-invariant, then µ-almost surely all
trees in F have at most two topological ends.



Burton-Pemantle Strategy: show that

each maximal entropy µ has a strong

Gibbs property and...

STRONG GIBBS PROPERTY: Fix any fi-

nite induced subgraph H of G, and write a ∼O b

if there is a path from a to b consisting of

edges outside of H. Let H ′ be the graph ob-

tained from H by identifying vertices equivalent

under ∼O. Then given FG\H, the conditional

measure on FH is the UST measure on H ′.

that if µ has the strong Gibbs

property, then µ = µG.



Unfortunately...

The maximal entropy µ may not have the strong

Gibbs property. For example, if G = Zd with

d > 4, then µG ∈ EG and µG almost surely F

contains infinitely many trees, each of which

has only one topological end (P, BLPS). Thus,

conditioned on FG\H, all configurations FH that

contain paths joining distinct infinite trees of

FG\H have probability zero.



Our strategy: show that each
maximal entropy µ has a weaker

Gibbs property and...

WEAK GIBBS PROPERTY: For each a

and b on the boundary of H, write a ∼I b if

a and b are connected by a path contained in-

side H. Then conditioned on this relation and

FG\H all choices for FH which give the same

relation occur with equal probability.



if µ has the weak Gibbs property then
and there is µ a.s. at most one two-
ended tree, then µ = µG.

CASE 1: If µ has the weak Gibbs property

and µ almost surely all trees have only one

topological end, in which case µ = µG,

CASE 2: If µ has the weak Gibbs property

and µ-almost surely F consists of a single two-

ended tree, then µ = µG.

CASE 3: If µ has the weak Gibbs property,

and µ-almost surely F contains exactly one

two-ended tree, then µ almost surely F con-

sists of a single tree and µ = µG.

If µ has weak Gibbs property and with
positive probability there are multiple
two-ended trees, then Ent(µ) < Ent(µG).


