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Annals of Mathematics.
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Height functions

Let Ω be the set of all valid height functions φ : Z
2 → R, i.e., functions

with differences 3/4 or −1/4 when crossing any edge (black vertex on
left) and φ((0, 0)) ∈ Z. Let F be the product σ-algebra on Ω and Fτ

the smallest sub-σ-algebra in which “differences in height” of the form
φ(y) − φ(x) are measurable.

A measure µ on (Ω,F) is called a measure on heights.

A measure µ on (Ω,Fτ ) is called a measure on tilings.
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Gibbs measures

A measure µ on (Ω,Fτ ) is called a gradient Gibbs measure or Gibbs
measure on tilings if conditioned on the tiles outside of a region R, all
ways of extending the tiling to that region are equally likely.

A Gibbs measure µ is extremal if it is an extreme point of the convex
set of all Gibbs measures or, equivalently, if it satisfies a zero one law
on tail events.

Let L be the set of chessboard-coloring preserving translations of Z
2.

An L-invariant measure µ is L-ergodic if it is an extreme point of the
convex set of L-invariant measures or, equivalently, if µ satisfies a
zero-one law on L-invariant events.
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Important facts

1. Every Gibbs measure can be uniquely written as a weighted average of
extremal Gibbs measures.

2. Every L-invariant measure can be uniquely decomposed into L-ergodic
measures. A measure µ is Gibbs if and only if its L-ergodic components
are a.s. Gibbs.

3. If µ is extremal, and Λn are increasing finite subsets of Z
2 whose union

is Z
2, then µ = limφγΛn

for almost all φ. (Here γΛn
is the usual

“rerandomize on Λn” kernel.)
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In other words...

To sample from an L-invariant measure µ on tilings, you can

1. First sample an L-ergodic component µ1 of µ.

2. Then sample an extremal component µ2 of µ1.

3. Then sample an actual tiling from µ2.
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Another important fact

We say a Gibbs measure (Ω,Fτ ) is smooth if it can be realized as the
restriction to Fτ of a Gibbs measure on (Ω,F). Clearly, a Gibbs
measure is smooth if and only if almost all of its extremal components
are smooth. If µ is an extremal Gibbs measure (Ω,F), then the µ
probability distribution on height at a point is log concave — in
particular, it has moments of all order.
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Slope

Define slope of an L-invariant µ by

S(µ) = (µ (φ(2, 0) − φ(0, 0)) , µ (φ(0, 2) − φ(0, 0))) .

Note that S(µ) = (PS − PN , PE − PW ) where PN , PS , PE , PW are
densities of dominos that point north, south, east west from their black
square. The four “brickwork” singletons have slopes (±1, 0) and
(0,±1). All possible slopes lie in convex hull of these; let U be its
interior.
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Q: What are the L-ergodic Gibbs measures?

1. 1965: Kasteleyn publishes The statistics of dimer arrangements on a

lattice.

2. 1975: Messager and Miracle-Solé classify ergodic Gibbs measures for
the Ising model.

3. 1993: Burton and Pemantle prove uniqueness of zero slope ergodic
Gibbs measure using spanning tree result (error found by Lyons, 2002;
new proof by S, 2004).

4. 1996: Cohn, Elkies, and Propp conjecture existence of unique
L-ergodic, slope u Gibbs measure for u ∈ U .

5. 2000: Cohn, Kenyon, Propp give explicit formulae for slope u Gibbs
measures in domino tiling case.

6. 2003: Kenyon, Okounkov, S give explicit formulae for general weighted
doubly periodic lattices involving amoebae of Harnack curves.
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A: Exists a unique one of each slope u ∈ U .

1. We will give a complete classification of the ergodic Gibbs measures of
a given slope u. The hard part will proving the Cohn, Elkies, Propp
conjecture—that for each u ∈ U there is a unique ergodic Gibbs
measure of slope u.

2. An adaptation of the Edwards-Sokal, Fortuin-Kasteleyn,
Swendsen-Wang updates called cluster swapping enables us to extend
the proof to any continuum or discrete height model with convex
nearest neighbor potential (e.g., square ice, linear solid-on-solid
models).

3. The approach also yields a soft proof for general models that “crystal
facets” have slopes in the dual of the lattice of translation invariance.
Algebraic proof given by Kenyon, Okounkov, S for periodic dimer
models.
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Easy part: When S(µ) ∈ ∂U

When the slope lies on the boundary, there are at most two directions
(e.g., south and east) that the dominos can point. Every SW to NE
diagonal row of black squares has all of its dominos point south or all of
them point east. The L-ergodic measures are thus in one-to-one
correspondence with one dimensional ergodic measures on {S, E}Z.
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Next: Variational Principle

Write µΛ for restriction of µ to the finite set T1, . . . Tn of tilings of Λ.
Write

FEΛ(µ) =

n∑

i=1

µ(Ti) log µ(Ti)

SFE(µ) = lim
n→∞

|Λn|
−1FEΛn

(µ),

called the specific free energy or µ.
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Variational Principle

If µ is an L-ergodic measure on tilings, then µ is a Gibbs measure if
and only if SFE(µ) is minimal among all L-invariant measures with
slope S(µ). Make an analogous definition if µ is a measure on pairs of
tilings that is invariant under translations that translate both
components in tandem.

If µ has marginals µ1, µ2 then SFE(µ) ≥ SFE(µ1) + SFE(µ2). If µ is an
L-ergodic measure on pairs of tilings and the average slope of the
components of µ is u and

SFE(µ) = SFE(µu ⊗ µu) = 2SFE(µu),

where µu is an L-ergodic Gibbs measure of slope u, then µ is Gibbs.
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Infinite path lemma

Lemma: If µ1 and µ2 are extremal Gibbs measures on tilings and
µ1 ⊗ µ2 a.s. the union of the two tilings contains no infinite path, then
µ1 = µ2.
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Couplings

Suppose that µ1 and µ2 are distinct ergodic Gibbs measures, both of
slope u ∈ U . How many infinite paths are in the union of tilings
sampled from µ1 ⊗ µ2? Previous lemma rules out zero. We now rule
out having k infinite paths with positive probability when

1. when 2 ≤ k < ∞ (swapping)

2. when k = ∞ (Burton-Keane and swapping)

3. when k = 1 (height offsets, RSW, homotopy of countably punctured
plane)
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Swapping infinite paths

Let R(µ1 ⊗ µ2) be measure on tilings pairs defined as follows: to
sample, first sample (φ1, φ2) from µ1 ⊗ µ2. Then pick one of the infinite
paths in the union and flip a coin to decide its orientation (whether
height goes up or down by one when crossing it). For every other
infinite path, determine its orientation by requirement that φ2 = φ1

assume only two integer values (say, zero and one) on infinite
components.
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If 2 ≤ k ≤ ∞...

FACT: unless u ∈ ∂U it is a.s. possible to join together all of the infinite
zero clusters (or all of the one clusters) with finitely many local changes
to the two tilings. Hence the number of infinite clusters with height
zero is an L-invariant function on tiling pairs such that µ, conditioned
on this function assuming some value, is not a Gibbs measure.
Hence R(µ1 ⊗ µ2) is not Gibbs. However, it is easily seen that

SFE(R(µ1 ⊗ µ2)) = SFE(µ1 ⊗ µ2).

Hence this has minimal specific free energy given its slope—since the
swappings don’t change average slope and SFE(µ1 ⊗ µ2) is minimal (by
variational principle)—so variational principle implies R(µ1 ⊗ µ2) is
Gibbs, a contradiction.
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If 2 ≤ k ≤ ∞...

For any three zero clusters, we can almost surely join the three together
with finitely many local moves. Thus, for some Λn, there is a positive
probability that there exists a connected component C0—of the
intersection of an infinite cluster C and Λn—whose removal breaks C
into three infinite pieces.

The expected number of such “trifurcation clumps” in Λn grows
linearly in |Λn|. However, Burton and Keane proved that the total
possible number of disjoint trifurcation clumps in Λn is bounded above
by |∂Λn|, a contradiction.
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If k = 1...

In this case, µ1 ⊗ µ2 almost surely there exists exactly one infinite path
in the union of the two perfect matchings.

Given sample (φ1, φ2) from µ1 ⊗ µ2, we can define the average height

difference to be the the limiting density of set of points on the side of
the infinite path on which the height function of φ2 minus that of φ1 is
largest. This difference is tail trivial property—so it is also defined on
extremal components.

In this case, the µi are clearly smooth. We can show that the extremal
components of µ1 and µ2 are indexed by the limit of the average
expectation of heights on n × n grids centered at the origin. Call this
limiting average height the height offset of the extremal measure.
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Law on height offsets

For i ∈ {1, 2} the µi probability distribution on set of height offsets
modulo one is ergodic under adding 1

2
(u, y) for y ∈ L. If µ1 and µ2 are

distinct, these probability distributions on [0, 1) are mutual singular. In
particular, µ1 and µ2 cannot be distinct if either component of u is
irrational.

If u has rational coordinates, then there are finitely many height offsets;
each ergodic Gibbs measure decomposes into finitely many components.
Let ν1 and ν2 be extremal components from µ1 and µ2 respectively.
These are invariant under a full rank sublattice of Z

2. Normalize the
height so that ν1 and ν2 both have height offsets in [0, 1). Let Γ be the
set of points on the high side of the path. It satisfies the FKG

inequality, i.e., increasing functions of Γ are non-negatively correlated.
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FKG inequality result

THEOREM: There exists no measure ρ on infinite simply connected
subsets Γ of the squares of the Z

2 lattice such that

1. ρ is invariant under a full rank sublattice of translations of Z
2.

2. The boundary between Γ and its complement is almost surely an
infinite path.

3. Increasing functions of Γ are non-negatively correlated.
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Idea: take grid of boxes, look at possible

topology of path in complement
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