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Infinity Laplacian on a graph:

∆∞u(x) =
1

2

(
inf
y∼x

u(y) + sup
y∼x

u(y)
)
−u(x)

Infinity Laplacian in Rn:

∆∞u(x) =

∑
uxiuxixjuxj

|∇u|2 =

“2nd derivative of u in the gradient

direction”

Say u is infinity harmonic if ∆∞u = 0. Infin-
ity harmonic functions are limits of p-harmonic
functions (i.e., minimizers of

∫ |∇u(x)|pdx) as
p → ∞. The p-harmonic functions solve the
Euler Lagrange equation

div(|∇u|p−2∇u) = 0

which can be rewritten as:

|∇u|p−2 (∆u + (p− 2)∆∞u) = 0
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Optimal Lipschitz Extensions

Given a Lipschitz function u, defined on a sub-

set Y of a metric space X with metric δ, what

is the “tightest” Lipschitz extension of u to

all of X?

If “tightest” means “minimizing Lipschitz norm”

Lu(X) := sup
x,y∈X

|u(x)− u(y)|
δ(x, y)

,

then (noting that we must have Lu(X) ≥ Lu(Y ))

the McShane-Whitney extensions (1934) are

largest and smallest extensions achieving this

bound:

inf
y∈Y

(u(y) + Lu(Y )|x− y|)

sup
y∈Y

(u(y)− Lu(Y )|x− y|)



AMLEs

Say u : X → R is an absolutely minimizing

Lipschitz (AML) extension of its values on Y

if for any open Z ⊂ (X\Y ) of finite diameter,

we have

Lu(Z) ≤ Lu(∂Z)

Theorem [Aronsson, Jensen]: When X is a

bounded, closed subset of Rn, Y = ∂X, and

u is a Lipschitz function on Y , there exists a

unique AML extension of u to X.



EXISTENCE PROOF: G. Aronsson (1967)

proves existence when X is bounded subset of

Rn, also shows that solutions are infinity har-

monic, i.e., “viscosity solutions” to ∆∞u =

0.

EXISTENCE EXTENSION: Juutinen (2002)

extends existence to case that X is a separa-

ble length space.

UNIQUENESS PROOF 1: Jensen (1993)

UNIQUENESS PROOF 2: Barles and Busca

(2001)

UNIQUENESS PROOF 3: Crandall, Aron-

sson, and Juutinen (2004): generalizes X to

uniformly convex norms on Rn.

We prove existence and uniqueness for all

length spaces using a game called Tug of

War.



Caselles, Masnou, Morel, and Sbert. Image

Interpolation. Seminaire de l’Ecole Polytech-

nique, Palaiseau, Paris, 1998.



Family of degenerate elliptic PDEs

∑
σi,j(x,∇u)uxixj + α(x,∇u) = 0

where σ and α depend continuously on x and

∇u and σ is always positive semi-definite but

not necessarily positive definite).

Examples include Laplacian, p-Laplacian, and

∞-Laplacian.

Our results imply existence and uniqueness

for solutions to a large class of PDEs in

this family. In particular, for a fixed positive

uniformly continuous g with Lipschitz bound-

ary conditions, we prove existence and unique-

ness of solutions to ∆∞u = g. This is the first

uniqueness result for g 6= 0. Uniqueness fails if

g can be both positive and negative, and game

theory tells us why.



Hex

The game of hex was invented independently

by Piet Hein in 1942 and John Nash in 1948.
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A game of hex played at the fifth computer

olympiad in London, August 24, 2000.



Random turn hex

After a player moves, flip a fair coin to see

who gets to move next. What is the optimal

strategy?

1
2

3
4

5
6

7

8
9

10
11

12

13

14
15

16
17

18

19

20

21

22
23

24
25

26

27

28
29

30
31

32
33

34

35
36

37

38

3940

41

42
43



Nearly optimal random turn hex
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Cricket team selection

GIVEN: 2 captains, n players, a payoff func-

tion F from the set of 2n player subsets to the

probability the first captain’s team wins.

CONVENTIONAL APPROACH: captains al-

ternate choosing players until all players are

chosen, and the teams play one game.

RANDOM TURNS: same except that before

each choice, a fair coin toss determines which

captain gets to choose a player.

CLAIM: If F is generic (say, its values are lin-

early independent over Q) and both players

play optimally, then each captain’s final team

will be uniformly distributed over the 2n possi-

bilities.



Tug of war

Tug of war on a graph: Given an graph G

with marked subset T of terminal vertices and

a payoff function F : T → R. A player who

wins a coin toss may move to any neighbor of

the current state. Game ends when terminal

vertex is reached.

EXAMPLE: ε-step Planar Tug of War. The

vertex set is R2 and x ∼ y if |x − y| ≤ ε, T =

T1 ∪ T2 (with F equal to 1 on T1, 0 on T2.)

Tug of war games (on undirected graphs)

are a very general class of reversible, player-

symmetric games.



Value existence

When the game starts at v, player one’s value,
denoted V1(v), is the

supremum, over all player one strategies, of
the

infimum, over all player two strategies, of the

expected payoff for player one when the play-

ers use those strategies (which we set equal to

−∞ if game does not end almost surely).

Define V2(v) similarly. Say game has a value

function V if V1 = V2.

The functions V1, V2, and V are all infinity

harmonic:

V (x) =
1

2

(
sup
y∼x

V (y) + inf
y∼x

V (y)

)
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Games without values
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Symmetric, reversible games

THEOREM: If the payoff function F , defined

on a subset T of the vertices of an undirected

graph is bounded between two constants, A

and B, then there is a function u which is:

1. The value of the game.

2. The unique bounded infinity harmonic func-

tion with the given boundary values.

3. The unique bounded AMLE of F .



THREE MAIN STEPS OF THE PROOF:

1. Existence of a bounded infinity harmonic

function u.

2. Standard u-based strategy implies the

connection to AMLE.

3. Payoff of u achievable for either player,

i.e., given any bounded infinity harmonic u,

V1 ≥ u and V2 ≥ −u.

From this, we conclude that the value func-

tion V = V1 = V2 exists, and it is the unique

bounded infinity harmonic function.



1. Existence

Define un to be the best player one can do

in a game modified so that if the boundary is

not reached in n steps, player one gets A (the

lowest possible value). Observe that u0(x) = A

on non-terminal states and

un(x) =
1

2

(
sup
y∼x

un−1(y) + inf
y∼x

un−1(y)

)

The un’s are increasing and bounded between

A and B. By induction, each un is infinity sub-

harmonic and the supremum u is clearly in-

finity superharmonic (otherwise it would get

bigger after another step), so u is infinity har-

monic.

Clearly, V1 ≥ u, and since player two can play in

such a way that u is a supermartingale, V1 ≤ u.

Hence u = V1.



2. Increasing increment sizes

and AMLE

Suppose graph is locally finite and u is bounded
and infinity harmonic and players play the nat-
ural strategy suggested by u, i.e., player 1
always moves to where u is maximal, player 2
to where u is minimal.

If both players play this way and xn is game
position after n steps, u(xn) is a martingale
with non-decreasing increment sizes, i.e.,

|u(xn+1)− u(xn)| ≥ |u(xn)− u(xn−1)|.

Thus, for any edge e = (x, y) with u(y)−u(x) =
δ > 0 and any induced subgraph X ′ of X con-
taining e, there is a path from y to the bound-
ary of ∂X ′ on which u increases by at least δ
at each step, and path from x to ∂X ′ on which
u decreases by at least δ at each step. Con-
clusion: Lipschitz norm of u in X is at most
the Lipschitz norm of u in ∂X ′. Thus u is an
AMLE.



3. Value is achievable:

Suppose graph is locally finite, x0 is starting
point, and there is a δ > 0 and a y neighboring
x0 with |y − x0| ≥ δ. Let Vδ be the collection
of all vertices on which u differs by δ or more
from its neighbors.

STRATEGY: when player two leaves Vδ, player
one can always “backtrack” until returning to
Vδ. Let vn be the last vertex of Vδ visited dur-
ing the first n moves; let yn be the number of
surplus turns player two has had since the last
visit to Vδ. Then observe:

u(vn)− δyn

is a submartingale which at each step goes up
by at least δ with probability 1/2. Convergence
follows from martingale convergence theorem,
and thus the game must end.



Tug of war with running payoffs

If g is fixed, solutions to ∆∞u = g have mean-

ing as the values of games in which player one

collects g(x) from player two each time x is

visited.

If g is positive some places and negative other

places, the game may not have a value. The

reason is that it may turn out that neither

player has an incentive to end the game—and

each player has to “waste” one or more valu-

able turns in order to force the game to end.



Fixed targets and comparison

with cones

Suppose player one begins the game with a

“target a single point” strategy. That is, player

one picks a fixed point x0 and a set S of states

and at each turn moves in a way that decreases

the distance to x0 by 1—stopping when game

position either reaches x0 or exits S. Play-

ing in this way makes distance to x0 a su-

permartingale, and this leads to an inequal-

ity. Namely, for any constants a > 0, b, if

u(x) ≥ aδ(x, x0)+b on the boundary of S\{x},
then u(x) ≥ aδ(x, x0) + b throughout S.

A function satisfying these inequalities and the

corresponding inequalities for player two is said

to satisfy comparison with cones. It is well

known and easy to show that on a length

space, satisfying comparison with cones is

equivalent to being an AMLE.



Value for continuum game

Tug of war variant: player-one-ε-target tug

of war.

At each step, player one targets a point y up

to ε units away. Then with probability 1/2,

player one reaches y (or hits the boundary at

a place within B2ε(y)) and with probability 1/2

the game state moves to a point in B2ε(y) of

the second player’s choice. If the game does

not terminate in n steps, player one receives A,

the lowest possible payoff. Denote by vn
ε the

value function for this game.

OBSERVE: vε = sup vn
ε is smaller than or equal

to any function which is bounded below by A

and satisfies comparison with cones. Define wε

using second player and we have:

Any bounded AMLE u satisfies vε ≤ u ≤ wε.



Sandwich argument

CLAIM: |vε − uε| = O(ε) and |wε − uε| = O(ε)

where uε is value of ordinary ε-step tug of war.

The claim implies wε − vε = O(ε). Since any

AMLE u satisfies vε ≤ u ≤ wε, letting ε go to

zero gives uniqueness.

PROOF OF CLAIM: When game position is

more than 2ε away from the boundary, one way

to think of the game is that player one always

takes one step, and then with probability 1/2

player two gets two steps.

Now, suppose every time player two gets one of

these two-step strings, player one uses the next

step to backtrack the latter of player two’s

moves. Then this reduces the game to ordi-

nary ε tug of war, with an error of O(ε) that

comes from what happens near the boundary.


