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Infinity Laplacian on a graph:

Ascu(e) = (jnf uw) + supu(y) ) ~u(@)

Infinity Laplacian in R":
[Vu|?
“2nd derivative of u in the gradient
direction”

Aoccu(xr) =

Say wu is infinity harmonic if Asxu = 0. Infin-
ity harmonic functions are limits of p-harmonic
functions (i.e., minimizers of [|Vu(x)|Pdx) as
p — oo. TI'he p-harmonic functions solve the
Euler Lagrange equation

div(|Vu|P~?Vu) =0
which can be rewritten as:

VulP™2 (Au+ (p— 2)Asou) =0
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Optimal Lipschitz Extensions

Given a Lipschitz function u, defined on a sub-
set Y of a metric space X with metric §, what
is the “tightest” Lipschitz extension of u to
all of X7

If “tightest” means “minimizing Lipschitz norm

L lu(z) — u(y)|
LulX) = w,syue%( 6(z,y)

then (noting that we must have Ly (X) > Ly (Y))
the McShane-Whitney extensions (1934) are
largest and smallest extensions achieving this

bound:

yiglf/(u(y) + Lu(Y)|z — yl)

sup(u(y) — Lu(Y)|z — yl)
yey



AMLES

Say v : X — R is an absolutely minimizing
Lipschitz (AML) extension of its values on Y
if for any open Z C (X\Y) of finite diameter,
we have

Lu(Z) < Lu(0Z)

Theorem [Aronsson, Jensen]: When X is a
bounded, closed subset of R", ¥ = 0X, and
u IS a Lipschitz function on Y, there exists a
unique AML extension of u to X.



EXISTENCE PROOF: G. Aronsson (1967)
proves existence when X is bounded subset of
R™ also shows that solutions are infinity har-
monic, i.e., “viscosity solutions” to Axu =
0.

EXISTENCE EXTENSION: Juutinen (2002)
extends existence to case that X is a separa-
ble length space.

UNIQUENESS PROOKF 1: Jensen (1993)

UNIQUENESS PROOF 2: Barles and Busca
(2001)

UNIQUENESS PROOF 3: Crandall, Aron-
sson, and Juutinen (2004): generalizes X to
uniformly convex norms on R".

We prove existence and uniqueness for all
length spaces using a game called Tug of
War.



Caselles, Masnou, Morel, and Sbert. Image
Interpolation. Seminaire de |'Ecole Polytech-
nique, Palaiseau, Paris, 1998.

Fagune 8:

Above Original nuage where ooclusions are o whibe,

Below-left Disocclusion performesd by solvimg equation D*ul L.h J, ] =0,
Strularities canmot be restonsd but regular peorts of nnage are well
reverial,

Below-right Disocclusion performed by the level Lnes based algorithm solving
equation Dl A1 = 0. The singularities ae well restored,



Family of degenerate elliptic PDEs

Zai’j(az, Vu)ugz; + a(z, Vu) =0

where o and o depend continuously on x and
Vu and o is always positive semi-definite but
not necessarily positive definite).

Examples include Laplacian, p-Laplacian, and
oo-Laplacian.

Our results imply existence and uniqueness
for solutions to a large class of PDEs in
this family. In particular, for a fixed positive
uniformly continuous g with Lipschitz bound-
ary conditions, we prove existence and unique-
ness of solutions to Asou = g. This is the first
uniqueness result for g = 0. Uniqueness fails if
g can be both positive and negative, and game
theory tells us why.



Hex

The game of hex was invented independently
by Piet Hein in 1942 and John Nash in 1948.
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A game of hex played at the fifth computer
olympiad in London, August 24, 2000.



Random turn hex

After a player moves, flip a fair coin to see
who gets to move next. What is the optimal
strategy?”




Nearly optimal random turn hex




Cricket team selection

GIVEN: 2 captains, n players, a payoff func-
tion F' from the set of 2™ player subsets to the
probability the first captain’s team wins.

CONVENTIONAL APPROACH: captains al-
ternate choosing players until all players are
chosen, and the teams play one game.

RANDOM TURNS: same except that before
each choice, a fair coin toss determines which
captain gets to choose a player.

CLAIM: If F is generic (say, its values are lin-
early independent over Q) and both players
play optimally, then each captain’s final team
will be uniformly distributed over the 2™ possi-
bilities.



Tug of war

Tug of war on a graph: Given an graph G
with marked subset 1" of terminal vertices and
a payoff function F : T — R. A player who
Wins a coin toss may move to any neighbor of
the current state. Game ends when terminal
vertex is reached.

EXAMPLE: e-step Planar Tug of War. The
vertex set is R2 and z ~y if [z —y| < e T =
T1 UT» (with F equal to 1 on 177, O on T5.)

Tug of war games (on undirected graphs)
are a very general class of reversible, player-
symmetric games.



Value existence

When the game starts at v, player one’s value,
denoted Vi (v), is the

supremum, over all player one strategies, of
the

INfimum, over all player two strategies, of the
expected payoff for player one when the play-
ers use those strategies (which we set equal to

—oo if game does not end almost surely).

Define Vo(v) similarly. Say game has a value
function V if V; = V5.

The functions V7, Vo, and V are all infinity
harmonic:

V)= (ggg V) + ;gm;vw))






Games without values

N e






Symmetric, reversible games

THEOREM: If the payoff function F', defined
on a subset T' of the vertices of an undirected
graph is bounded between two constants, A
and B, then there is a function uw which is:

1. The value of the game.

2. The unigue bounded infinity harmonic func-
tion with the given boundary values.

3. The unique bounded AMLE of F'.



THREE MAIN STEPS OF THE PROOF:

1. Existence of a bounded infinity harmonic
function w.

2. Standard u-based strategy implies the
connection to AMLE.

3. Payoff of u achievable for either player,
i.e., given any bounded infinity harmonic wu,
Vi > w and Vo > —u.

From this, we conclude that the value func-
tion V = V7 = V5 exists, and it is the unique
bounded infinity harmonic function.



1. Existence

Define uw, to be the best player one can do
in @ game modified so that if the boundary is
not reached in n steps, player one gets A (the
lowest possible value). Observe that ug(z) = A
on non-terminal states and

n(@) = 3 (50D U1 + 0T w2 0)

y~x

The up's are increasing and bounded between
A and B. By induction, each uy is infinity sub-
harmonic and the supremum wu is clearly in-
finity superharmonic (otherwise it would get
bigger after another step), so u is infinity har-
monic.

Clearly, V1 > u, and since player two can play in
such a way that u is a supermartingale, V7 < u.
Hence u = Vj.



2. Increasing increment sizes
and AMLE

Suppose graph is locally finite and « is bounded
and infinity harmonic and players play the nat-
ural strategy suggested by u, i.e., player 1
always moves to where u is maximal, player 2
to where u is minimal.

If both players play this way and z, iSs game
position after n steps, u(xn) is a martingale
with non-decreasing increment sizes, i.e.,

|’U,(£Cn_|_1) - u(:z:n)| > |u($n) — u(xn—1)|-

Thus, for anyedge e = (z,y) with u(y) —u(x) =
d > 0 and any induced subgraph X’ of X con-
taining e, there is a path from y to the bound-
ary of 90X’ on which « increases by at least §
at each step, and path from x to 84X’ on which
u decreases by at least § at each step. Con-
clusion: Lipschitz norm of u in X is at most
the Lipschitz norm of w in 8X’. Thus » is an
AMLE.



3. Value is achievable:

Suppose graph is locally finite, zg is starting
point, and there is a § > 0 and a y neighboring
xg With |y — xg| > 8. Let V5 be the collection
of all vertices on which « differs by § or more
from its neighbors.

STRATEGY: when player two leaves Vs, player
one can always “backtrack” until returning to
Vs. Let v, be the last vertex of Vs visited dur-
ing the first n moves,; let y, be the number of
surplus turns player two has had since the last
visit to V5. Then observe:

w(vn) — dyn

IS a submartingale which at each step goes up
by at least § with probability 1/2. Convergence
follows from martingale convergence theorem,
and thus the game must end.



Tug of war with running payoffs

If g is fixed, solutions to A~u = g have mean-
ing as the values of games in which player one
collects g(x) from player two each time z is
visited.

If g is positive some places and negative other
places, the game may not have a value. The
reason is that it may turn out that neither
player has an incentive to end the game—and
each player has to “waste” one or more valu-
able turns in order to force the game to end.



Fixed targets and comparison
with cones

Suppose player one begins the game with a
“target a single point” strategy. That is, player
one picks a fixed point xg and a set S of states
and at each turn moves in a way that decreases
the distance to zg by 1—stopping when game
position either reaches xg or exits §. Play-
ing in this way makes distance to xg a su-
permartingale, and this leads to an inequal-
ity. Namely, for any constants a > 0,b, if
u(x) > ad(xz,xg)+bon the boundary of S\{z},
then u(x) > ad(z,zg) + b throughout S.

A function satisfying these inequalities and the
corresponding inequalities for player two is said
to satisfy comparison with cones. It is well
known and easy to show that on a length
space, satisfying comparison with cones is
equivalent to being an AMLE.



Value for continuum game

Tug of war variant: player-one-c-target tug
of war.

At each step, player one targets a point y up
to e units away. Then with probability 1/2,
player one reaches y (or hits the boundary at
a place within Bs.(y)) and with probability 1/2
the game state moves to a point in By (y) of
the second player’'s choice. If the game does
not terminate in n steps, player one receives A,
the lowest possible payoff. Denote by v[' the
value function for this game.

OBSERVE: ve = sup v/ is smaller than or equal
to any function which is bounded below by A
and satisfies comparison with cones. Define we
using second player and we have:

Any bounded AMLE u satisfies ve < u < we.



Sandwich argument

CLAIM |’U€ — u€| — O(E) and |’LU€ - u€| — O(E)
where u¢ is value of ordinary e-step tug of war.

The claim implies we — ve = O(e). Since any
AMLE wu satisfies ve < u < we, letting € go to
Zero gives unigueness.

PROOF OF CLAIM: When game position is
more than 2¢ away from the boundary, one way
to think of the game is that player one always
takes one step, and then with probability 1/2
player two gets two steps.

Now, suppose every time player two gets one of
these two-step strings, player one uses the next
step to backtrack the latter of player two’'s
moves. Then this reduces the game to ordi-
nary e tug of war, with an error of O(e) that
comes from what happens near the boundary.



