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The d − dimensional Gaussian free field (GFF) is a natural d − dimensional di-
mensional time analog of Brownian motion. It places an important role in statistical
physics and the theory of random surfaces. This term paper will focus on the case
where d = 2.

Let D ⊂ C be a bounded domain with smooth boundary and C∞
0 (D) denote the set

of smooth functions compactly supported in D. The Dirichlet inner product is defined
by (f, g)O =

∫
D
5f · 5gdx. Let H(D) denote the Hilbert space closure of C∞

0 (U)
under (·, ·)O. The continuum Gaussian free field (GFF) on D is defined formally as a
random linear combination

(1) h =
∞∑

j=1

αjfj,

where fj are an ordered orthonormal basis for H(D) and αi are i.i.d. Gaussian
variables defined on the canonical probability space (Ω = RN,F , µ). The formal
series (1) does not converge in H(D) almost surely but it converges in La(D) for
any a > 0 if d = 2 (Sheffield, 2007). However for any f =

∑
j βjfj ∈ H(D) since∑

j βj < ∞,
∑

j βjαj converges almost surely. Therefore (h, f)O :=
∑

j βjαj is almost

surely well-defined and is a Gaussian variable with mean zero and variance (f, f)O.
Furthermore the map f ∈ H(D) → (h, f)O ∈ Ω inherits the Dirichlet innor product
structure of H(D), that is

(2) E[(h, f)O(h, g)O] = (f, g)O.

Example. Let D be the unit torus R2/Z2. The eigenvectors ek = e2πix·k, k ∈ Z2 of
the Laplacian are an orthonormal basis for L2(D). An orthonormal basis for H(D)
can then be explicitly written as fk = 1

2π|k| e2πix·k. For any given x ∈ D and any fixed

ordering of k ∈ Z2, the partial sums of
∑k

j=1 αjfj(x) diverges almost surely since

the variance of the partial sums are given by (2π)−2
∑ |k|−2. Therefore h is not well

defined as a random variable at any given point x ∈ D.

In the two dimensional case d =, the Dirichlet inner product is conformally invari-
ant. Therefore from the example above we know that h will not be well-defined at
any given x ∈ D for any bounded domain D. While it is thus impossible to study h
as a random variable at any given point, it is possible to study the average behavior
of h on certain subsets of D. Let ρ be any measure on D such that f → ∫

D
fdρ is

a continuous linear functional on H(D) which is the case iff
∑ | ∫

D
fjdρ|2 < ∞.

Then by the duality of Hilbert spaces, there is a unique ρ0 ∈ H(D) such that∫
D

fdρ = (ρ0, f)O for all f ∈ H(D). In fact, ρ0 =
∑

(
∫

D
fjdρ)fj and ρ = −∆ρ0.

Consequently (h, ρ0)O =
∑

αj(
∫

D
fjdρ) and can be thought of as the average of h

over D under measure ρ.
The measure that is particular simple but elegant is the uniform measure on the cir-

cle ∂D(z, r) which we denote by µ(z, r). It is easy to verify that
∑ | ∫

D
fjdµ(z, r)|2 <

∞ and therefore h(z, r) :=
∑

αj(
∫

D
fjdµ(z, r)) is a.s. well defined. Note that for
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0 ≤ t0 ≤ s ≤ t,

Cov(h(z, e−t), h(z, e−s)) = (−∆−1µ(z, e−t),−∆−1µ(z, e−s))O =
s

2π
+ C(z).

Hence
√

2πh(z, e−t)−√2πh(z, e−t0) has the same mean and covariance as a standard
Brownian motion and let us write B(z, t) for

√
2πh(z, e−t)−√2πh(z, e−t0) .

By the Brownian law of iterated logarithm, for any z ∈ D.

lim
t→∞

B(z, t)√
2t log2 t

= 1, a.s.(3)

A natural question to ask is what we can say about limt→∞ supz∈D
B(z,t)√
2t log2 t

. Hu,

Miller and Peres (2009) defined TC(a; D) = {z ∈ D : limt→∞
B(z,t)√

2t
=
√

a} and proved

the following theorem:

Theorem 1. (Hu, Miller and Peres) The Hausdorff dimension of T c(a; D) is almost
surely 2− a for any 0 ≤ a ≤ 2. If a > 2, T c(a; D) is almost surely empty.

They proved the theorem in two steps. First they showed that TC
≥ (a; D) := {z ∈

D : lim supt→∞
B(z,t)√

2t
≥ √

a} has Hausdorff dimension at most 2 − a for 0 ≤ a ≤ 2

and TC
≥ (a; D) is empty a.s. if a > 2. Second they showed dimH TC(a; D) ≥ 2− a.

The key in their argument for the first conclusion is the fact that h(z, r) has a
locally γ-Hölder continuous modification if γ < 1/2. More specifically, the following
was proved by Hu, Miller and Peres (2009).

Proposition 2. (Hu, Miller and Peres) The circle average h(z, r) has a modification

ĥ(z, r) such that for any 0 < γ < 1/2 and ε, ξ > 0 there exists M = M(γ, ε, ξ) such
that

(4) |ĥ(z, r)− ĥ(w, s)| ≤ M(log
1

r
)ξ |(z, r)− (w, s)|γ

rγ+ε

for all z, w ∈ D and r, s ∈ (0, 1] with 1/2 ≤ r/2 ≤ 2.

With Proposition (2), the authors showed |B(z, t) − B(z, K log n)| ≤ O((log n)ξ)
for any ξ < 1 and K log n < t < K log(n + 1) thus reducing the problem to discrete
time points. Second |B(z, K log n) − B(znj, K log n)| ≤ O((log n)ξ) where (znj) is
a maximal n−K net of D and z ∈ D(znj, n

−K). Then they tried to show that the
following set contains TC

≥ (a; D) for any large N :

(5) I(a,N) =
⋃

n≥N

{D(znj, n
−K) : j ∈ In}

where

(6) In = {j :
|B(znj, K log n)|√

2K log n
≥ √

a− C(log n)ξ−1}

A classic inequality will give

P (
|B(znj, K log n)|√

2K log n
≥ √

a− C(log n)ξ−1) = O(n−Ka−o(1))

which leads to a bound on E|In| and E[
∑

n≥N

∑
j∈In

diamD(znj, n
−K)α] → 0 N →∞

for any α = 2− a + (2 + a)/K. For a > 2, E|In| → 0.
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While the basic idea is clear, the conclusion made at (5) needs more justifica-

tion. For example, if B(z, K log n)/(
√

2K log n) =
√

a −
√

(log n)ξ−1, then we have

lim supt→∞
B(z,t)√

2t
≥ √

a but we cannot conclude j ∈ In just knowing z ∈ D(znj, n
−K).

The lower bound TC(a; D) ≥ 2− a is more involved. It calls for a result (Theorem
8.7) from Martin (1995). The α-energy of a measure τ on D is defined as

(7) Iα(τ) =

∫ ∫
|x− y|−αdτ(x)dτ(y).

Theorem 8.7 of Martin (1995) implies that if Iα(τ) < ∞, then the support of τ
has Hausdorff dimension at least α. Hu, Miller and Peres considered measures τn

concentrated in the neighborhoods of a finite subset of what is called n-perfect a-thick
points. The set of n-perfect a-thick points is En = {z : |B(z, t)−B(z, tm)−√2a(t−
tm)| ≤ √

tm+1 − tm, ∀m ≤ n}. Note that B(z, t)−B(z, tm) is defined on the annulus
D(z, e−tm)/D(z, e−t) and for different m the annuli are disjoint. The Markov property
of GFF implies B(z, t)−B(z, tm), tm < t < tm+1 and B(z, t)−B(z, tn), tn < t < tn+1

are disjoint. This allows them to get the following estimate:

(8) P (z, w ∈ En) ≤ O(|z − w|−a−ε)P (z ∈ En)P (w ∈ En)

for all large n and any ε > 0. This joint probability estimate made it possible to show
that EI2−a−ε(τn) < B < ∞, ∀n. (8) also implies that τn(D) has uniformly bounded
first and second moments. Consequently by Paley-Zygmund inequality there exists
b, d, v > 0 such that Gn = {b ≤ τn(D) ≤ b−1, I2−a−ε(τn) ≤ d} has probability measure
P (Gn) > v and thus P (G) > 0 for G = lim supn Gn. For any w ∈ G, the lower semi-
continuity of Iα implies that there is measure τ with b ≤ τ(D) ≤ b−1, I2−a−ε(τ) ≤ d
that concentrates on Pa(w) where Pa is the set of points contained in the support of τn

for infinitely many n and thus measurable. Therefore dimH Pa(w) ≥ 2−a−ε for every
w ∈ G. Then Hewitt-Savage zero-one law implies that P (dimH Pa(w) ≥ 2−a−ε) = 1

It is worth mentioning that Xu, Miller and Peres originally defined z ∈ D to be an
a-thick point if

(9) lim
r→0

∫
D(z,r)

h(x)dx

πr2 log 1
r

=

√
a

π
.

Since 1D(z,r) ∈ Lb(D) for −1/2 < b < 0, the dual pairing of 1D(z,r) and h implies that∫
D(z,r)

h(x)dx is continuous in (z, r) while by Proposition 2 h(z, s) has a continuous

modification. Therefore it is not hard to see that almost surely∫ r

0

2πsh(z, s)ds =

∫

D(z,r)

h(x)dx, for all z.

From this equality they obtained the collection of thick points TC(a; D). Theorem 1
thus translates to the following:

Theorem 3. (Hu, Miller and Peres) Let T (a,D) denote the set of a-thick points.
The Hausdorff dimension of T (a,D) is almost surely 2 − a for any 0 ≤ a ≤ 2. If
a > 2, T (a,D) is almost surely empty.
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