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The d — dimensional Gaussian free field (GFF) is a natural d — dimensional di-
mensional time analog of Brownian motion. It places an important role in statistical
physics and the theory of random surfaces. This term paper will focus on the case
where d = 2.

Let D C C be a bounded domain with smooth boundary and C§°(D) denote the set
of smooth functions compactly supported in D. The Dirichlet inner product is defined
by (f,9)y = [, V[ - vgdx. Let H(D) denote the Hilbert space closure of C§°(U)
under (-, -)y. The continuum Gaussian free field (GFF) on D is defined formally as a
random linear combination

(1) h=>)_of;
j=1

where f; are an ordered orthonormal basis for H(D) and «; are iid. Gaussian
variables defined on the canonical probability space (Q = RN, F, ). The formal
series (1) does not converge in H(D) almost surely but it converges in L,(D) for
any a > 0 if d = 2 (Sheffield, 2007). However for any f = > .8;f; € H(D) since
> Bj <00, 3, Bjey; converges almost surely. Therefore (h, )y = 3_; Bja; is almost
surely well-defined and is a Gaussian variable with mean zero and variance (f, f)s.
Furthermore the map f € H(D) — (h, f)y € € inherits the Dirichlet innor product
structure of H(D), that is

(2) E[(h, f)v(h,9)s] = (f,9)s-

Example. Let D be the unit torus R?/Z2. The eigenvectors e, = e*™@* L € 72 of
the Laplacian are an orthonormal basis for L?(D). An orthonormal basis for H(D)

can then be explicitly written as f), = #k' e? @k For any given v € D and any fixed

ordering of k& € 72, the partial sums of Zle a;fj(x) diverges almost surely since
the variance of the partial sums are given by (27)72 > |k|~2. Therefore h is not well
defined as a random variable at any given point = € D.

In the two dimensional case d =, the Dirichlet inner product is conformally invari-
ant. Therefore from the example above we know that h will not be well-defined at
any given x € D for any bounded domain D. While it is thus impossible to study h
as a random variable at any given point, it is possible to study the average behavior
of h on certain subsets of D. Let p be any measure on D such that f — [, fdp is
a continuous linear functional on H(D) which is the case iff > | [, f;dp|* < oc.
Then by the duality of Hilbert spaces, there is a unique py € H(D) such that
[ fdp = (po, f)v for all f € H(D). In fact, py = Y ([, fidp)f; and p = —Apo.
Consequently (h,po)y = > ([, fidp) and can be thought of as the average of h
over D under measure p.

The measure that is particular simple but elegant is the uniform measure on the cir-
cle 9D(z,r) which we denote by yi(z,7). It is easy to verify that > | [ fidu(z,r)?> <
oo and therefore h(z,r) := > a;( [}, fdu(z,7)) is a.s. well defined. Note that for
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0<ty<s<t,
Cov(h(z,e "), Az, e7*)) = (A pu(z, ™), = A u(z,07))g = =

Y
Hence v2mh(z,e™") —v/27h(z,e7") has the same mean and covariance as a standard
Brownian motion and let us write B(z,t) for v27h(z,e™") — v/2wh(z,e7 ") .

By the Brownian law of iterated logarithm, for any z € D.

— B(z,t)

3 lim ————
) t—oo /2t logy T

B(z,t)

A natural question to ask is what we can say about lim; .. sup,cp . Hu
\/2tlogy t ’

+ C(z).

=1, a.s.

Miller and Peres (2009) defined T (a; D) = {2 € D : lim;_.o, B\%’f) = y/a} and proved

the following theorem:

Theorem 1. (Hu, Miller and Peres) The Hausdorff dimension of T¢(a; D) is almost
surely 2 — a for any 0 < a < 2. If a > 2, T(a; D) is almost surely empty.

They proved the theorem in two steps. First they showed that TS (a; D) := {z €

D : limsup,_, B\(/Zi’? > /a} has Hausdorff dimension at most 2 — a for 0 < a < 2

and TS (a; D) is empty a.s. if @ > 2. Second they showed dimy T (a; D) > 2 — a.

The key in their argument for the first conclusion is the fact that h(z,r) has a
locally y-Holder continuous modification if 7 < 1/2. More specifically, the following
was proved by Hu, Miller and Peres (2009).

Proposition 2. (Hu, Miller and Peres) The circle average h(z,r) has a modification

h(z,7) such that for any 0 < v < 1/2 and &,& > 0 there exists M = M(v,¢,€) such
that
; ; LielCzr) = (w, 8)]”
o ¢ ) )
(@) (2, r) — b, )] < M(log LT
for all zyw € D and r,s € (0,1] with 1/2 <r/2 < 2.

With Proposition (2), the authors showed |B(z,t) — B(z, K logn)| < O((logn)*)
for any £ < 1 and Klogn < t < Klog(n + 1) thus reducing the problem to discrete
time points. Second |B(z, K'logn) — B(z,;, K logn)| < O((logn)*) where (z,;) is
a maximal =% net of D and z € D(z,;,n %). Then they tried to show that the
following set contains T¢ (a; D) for any large N:

(5) I(a,N) = [J{D(znjsn™™) 1 j € I}

n>N

where

B(z,;, K1
(6) In:{] ‘ (Z] Ogn)l
V2K logn
A classic inequality will give
P(\B(znj,KlognM
V2K logn

which leads to a bound on E|I,| and E[}°, .y >~ ., diamD(z,;,n )] — 0 N — oo
foranya =2—-a+ (24 a)/K. For a > 2, E|l,| — 0.

> Va—C(logn)*'}

> Va — C(logn)s™t) = O(n~Kee)
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While the basic idea is clear, the conclusion made at (5) needs more justifica-

tion. For example, if B(z, Klogn)/(v2K logn) = v/a — v/(logn)¢1, then we have

limsup,_, B\(/’gtt) > \/a but we cannot conclude j € I,, just knowing z € D(z,j,n~ ).

The lower bound T (a; D) > 2 — a is more involved. It calls for a result (Theorem
8.7) from Martin (1995). The a-energy of a measure 7 on D is defined as

(7) L) = [ [l =yl edr@yry).

Theorem 8.7 of Martin (1995) implies that if I,(7) < oo, then the support of 7
has Hausdorff dimension at least . Hu, Miller and Peres considered measures 7,
concentrated in the neighborhoods of a finite subset of what is called n-perfect a-thick
points. The set of n-perfect a-thick points is E® = {z : |B(z,t) — B(2,tmm) — V2a(t —
tm)| < V/tms1 — tm, ¥Ym < n}. Note that B(z,t) — B(z,t,,) is defined on the annulus
D(z,e7')/D(z,e™") and for different m the annuli are disjoint. The Markov property
of GFF implies B(z,t) — B(2z,tm), tm <t < tmy1 and B(z,t) — B(z,t,), t, <t <ty
are disjoint. This allows them to get the following estimate:

(8) P(z,w € E™") <O(|z —w|™*°)P(z € E")P(w € E")

for all large n and any € > 0. This joint probability estimate made it possible to show
that Ely_o_(1,) < B < 00, Vn. (8) also implies that 7,,(D) has uniformly bounded
first and second moments. Consequently by Paley-Zygmund inequality there exists
b,d,v > 0 such that G, = {b < 7,,(D) < b~ ', I, .(7,) < d} has probability measure
P(G,) > v and thus P(G) > 0 for G = limsup,, G,,. For any w € G, the lower semi-
continuity of I, implies that there is measure 7 with b < 7(D) < b ' I, , (1) < d
that concentrates on P,(w) where P, is the set of points contained in the support of 7,
for infinitely many n and thus measurable. Therefore dimy P,(w) > 2—a—¢ for every
w € G. Then Hewitt-Savage zero-one law implies that P(dimy P,(w) > 2—a—¢) =1

It is worth mentioning that Xu, Miller and Peres originally defined z € D to be an
a-thick point if

. fD(z,r) h((lf)dl’ a
9) lim ————— =/ —.

r—0  7r?log - ™
Since 1p(.,) € Lp(D) for —1/2 < b < 0, the dual pairing of 1p(.,y and h implies that
fD(z " h(x)dx is continuous in (z,r) while by Proposition 2 h(z, s) has a continuous
modification. Therefore it is not hard to see that almost surely

/ 2msh(z, s)ds :/ h(z)dz, for all z.
0 D(z,r)

From this equality they obtained the collection of thick points T¢(a; D). Theorem 1
thus translates to the following:

Theorem 3. (Hu, Miller and Peres) Let T'(a, D) denote the set of a-thick points.
The Hausdorff dimension of T(a,D) is almost surely 2 — a for any 0 < a < 2. If
a> 2, T(a,D) is almost surely empty.
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