Limit Theorems Final Exam Due 10:30 a.m., December 16

1. Prove that an infinitely divisible probability distribution μ on \mathbb{R} is supported on the rational numbers $\mathbb{Q} \subset \mathbb{R}$ (i.e., $\mu(\mathbb{Q}) = 1$) if and only if some translation of μ by a rational number has the form $e_{\lambda}(M)$ for some $\lambda > 0$ and some probability measure M which is supported on \mathbb{Q} .

2. Let $\{X_i\}$ be a sequence of i.i.d. bounded random variables taking values in the integer grid \mathbb{Z}^2 . Let $S_n = \sum_{i=1}^n X_i$. Prove that the sequence S_n is a recurrent Markov chain if and only if $\mathbb{E}[X_1] = 0$. Is this still true if we allow the X_i to be unbounded?

3. Can you give an example of a sequence of probability measures μ_n on \mathbb{R} whose characteristic functions ϕ_n converge point-wise (as *n* tends to infinity) to the function $1_{\mathbb{Z}}$, where \mathbb{Z} is the set of integers? What if we replace $1_{\mathbb{Z}}$ with 1_A , where A is the set of integers whose absolute values are perfect squares?

4. Let μ be a probability measure on a measure space (Ω, \mathcal{F}) . Suppose \mathcal{A} , \mathcal{B} , and \mathcal{C} are σ subalgebras of \mathcal{F} and that Q_a is a family of measures on (Ω, \mathcal{F}) (indexed by $a \in \Omega$) that gives a regular conditional probability for μ given \mathcal{A} . That is, for all $S \in \mathcal{F}$, the maps $a \to Q_a(S)$ are \mathcal{A} measurable; $Q_x(A) = 1_A$ for all $A \in \mathcal{A}$; and for all \mathcal{F} -measurable functions f, it is μ -almost everywhere the case that $\mathbb{E}^{\mu}[f|\mathcal{A}] = \int f dQ_a$. Suppose further that the following hold:

- (a) \mathcal{A} is μ -independent of \mathcal{B} (i.e., for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$, $\mu(A \cap B) = \mu(A)\mu(B)$)
- (b) \mathcal{A} is μ -independent of \mathcal{C}
- (c) For μ -almost all a, the algebras \mathcal{B} and \mathcal{C} are Q_a -independent of each other.

Prove that \mathcal{A} is μ -independent of the σ algebra generated by $\mathcal{B} \cup \mathcal{C}$. Is this still true without requirement (c)?

5. Let Ω be a (infinite dimensional with a countable basis) separable Hilbert space and let \mathcal{B} be the smallest field (not necessarily a σ -field) containing all subsets of Ω of the form $\{f : (f,g) \in A\}$ where $g \in \Omega$ and Ais a Borel subset of \mathbb{R} . Let \mathcal{F} be the σ -field generated by \mathcal{B} .

- (a) Is it possible to construct a finitely additive (though not necessarily σ -additive) probability measure on (Ω, \mathcal{B}) that is invariant under all Hilbert space automorphisms of Ω (besides the trivial measure which assigns measure 1 to the origin)? [Hint: try a Gaussian measure. Recall: a Hilbert space automorphism T is a linear bijection from the Hilbert space to itself that preserves the inner product, i.e., (f,g) = (Tf,Tg)).]
- (b) Is it possible to construct a σ -additive probability measure on (Ω, \mathcal{F}) that is invariant under all Hilbert space automorphisms of Ω (besides the trivial measure which assigns measure 1 to the origin)?