Limit Theorems Problem Set 7 Due November 15

- 1. Prove that for each $\alpha \in (0, 2]$ there is an infinitely divisible probability distribution μ_{α} on \mathbb{R} with characteristic function $\phi(t) = e^{-|t|^{\alpha}}$. These are called the Lévy symmetric α -stable distributions.
- 2. Give the Lévy Khintchine representation for general α .
- 3. Show that the Cauchy distribution is obtained when $\alpha = 1$ and the Gaussian distribution when $\alpha = 2$.
- 4. Prove that the Lévy symmetric α -stable distributions (and constant rescalings) are the only symmetric-about-zero probability distributions μ on \mathbb{R} with the property that for all n the convolution of n copies of μ is a constant rescaling of μ .
- 5. Prove that the variance is finite only when $\alpha = 2$.
- 6. Find out more about these distributions and their generalizations by reading, e.g., Wikipedia's article on Levy skew stable distributions.