The SLE trace is a continuous path

Hoeskuldur Petur Halldorsson

May 17, 2009

Abstract

This is a final project in the class 18.177 - Stochastic Processes in Physics. A proof of the fact that the SLE_{κ} trace is a continuous path will be given in the case $\kappa \neq 8$, following the argument in [RS].

Let's review the definition of chordal SLE_{κ} . For $\kappa > 0$ let $\xi(t) := \sqrt{\kappa}B_t$ where B_t is Brownian motion on \mathbb{R} started from $B_0 = 0$. For each $z \in \overline{\mathbb{H}} \setminus \{0\}$ we let $g_t(z)$ be the solution of the ODE

$$\partial_t g_t(z) = \frac{2}{g_t(z) - \xi(t)}, \quad g_0(z) = z$$
 (1)

which exists as long as $g_t(z) - \xi(t)$ is bounded away from zero. Denote by $\tau(z)$ the first time τ such that 0 is a limit point of $g_t(z) - \xi(t)$ as $t \nearrow \tau$. Set

$$H_t := \{ z \in \mathbb{H} : \tau(z) > t \}, \quad K_t := \{ z \in \overline{\mathbb{H}} : \tau(t) \le t \}.$$

For all $t \ge 0$, H_t is open and K_t is compact. The parameterized collection of maps $(g_t : t \ge 0)$ is called chordal SLE_{κ} . For every $t \ge 0$ the map $g_t : H_t \to \mathbb{H}$ is a conformal homeomorphism and H_t is the unbounded component of $\mathbb{H} \setminus K_t$.

Two important basic properties of chordal SLE are summarized in the following proposition.

Proposition 1. 1. Scaling property: The process $(z,t) \mapsto \tilde{g}_t = \alpha^{-1/2} g_{\alpha t}(\sqrt{\alpha}z)$ has the same law as the process $(z,t) \mapsto g_t(z)$.

2. Let $t_0 > 0$. The map $(z,t) \mapsto \hat{g}_t(z) := g_{t+t_0} \circ g_{t_0}^{-1}(z+\xi(t_0)) - \xi(t_0)$ has the same las as the map $(z,t) \mapsto g_t(z)$; moreover, $(\hat{g}_t)_{t\geq 0}$ is independent of $(g(t))_{0\leq t\leq t_0}$.

Proof. We have

$$\partial_t \tilde{g}_t(z) = \frac{2}{\tilde{g}_t(z) - \alpha^{-1/2} \xi(\alpha t)}, \quad \partial_t \hat{g}_t(z) = \frac{2}{\hat{g}_t(z) - (\xi(t+t_0) - \xi(t_0))}$$

so the result follows from the scaling property and translation invariance of Brownian motion. The independence claim follows from the Markov property of Brownian motion.

We will use the following notation

$$f_t := g_t^{-1}, \quad \hat{f}_t(z) = f_t(z + \xi(t))$$

The **trace** γ of SLE is defined by

$$\gamma(t) := \lim_{z \to 0} \hat{f}_t(z)$$

where z tends to 0 within \mathbb{H} . If the limit does not exist, let $\gamma(t)$ denote the set of all limit points. We say that the SLE trace is a continuous path if the limit exists for every t and $\gamma(t)$ is a continuous function of t. Our goal is to show precisely this.

The following technical lemma gives a sufficient condition for a local martingale to be a martingale.

Lemma 2. Let B_t be a standard one dimensional Brownian motion and let a_t be a progressive real valued locally bounded process. Suppose X_t satisfies

$$X_t = \int_0^t a_s dB_s$$

and that for every t > 0 there is a finite constant c(t) such that

$$a_s^2 \le c(t)X_s^2 + c(t) \tag{2}$$

for all $s \in [0, t]$ a.s. Then X is a martingale.

Proof. We already know that X is a local martingale. Take a large M > 0 and let $T := \inf\{t : |X_t| \ge M\}$. Then $Y_t := X_{t \land T}$ is a martingale. Put $f(t) := \mathbf{E}[Y_t^2]$. Itô's isometry then gives

$$f(t') = \mathbf{E}\left[\int_0^{t'} a_s^2 \mathbf{1}_{s < T} ds\right].$$

Our assumption (2) therefore implies that for $t' \in [0, t]$

$$f(t') \le c(t)t' + c(t) \int_0^{t'} f(s)ds,$$
 (3)

since $(1 + X_s^2) \mathbb{1}_{s < T} \le 1 + Y_s^2$. If t' is the least $s \in [0, t]$ such that $f(s) \ge e^{2c(t)s}$, we get by (3)

$$e^{2c(t)t'} \leq f(t') \leq c(t)t' + c(t) \int_0^{t'} f(s)ds < c(t)t' + c(t) \int_0^{t'} e^{2c(t)s}ds$$

= $c(t)t' + \frac{1}{2}e^{2c(t)t'} - \frac{1}{2}$

i.e. $e^{2c(t)t'} < 2c(t)t' - 1$, a contradiction. Hence $f(s) < e^{2c(t)s}$ for all $s \in [0, t]$. Thus,

$$\mathbf{E}[\langle X, X \rangle_{t \wedge T}] = \mathbf{E}[\langle Y, Y \rangle_t] = \mathbf{E}[Y_t^2] = f(t) < e^{2c(t)t}$$

By letting $M \to \infty$ we get by monotone convergence $\mathbf{E}[\langle X, X \rangle_t] \leq e^{2c(t)t} < \infty$. Hence X is a martingale (by [RY99, IV.1.25]).

We will need estimates for the moments of $|\hat{f}'_t|$. For convenience, we let B_t be a twosided Brownian motion. Equation (1) can also be solved for negative t and g_t is a conformal map from \mathbb{H} into a subset of \mathbb{H} when t < 0. Note that Proposition 1 also holds in this generalized setting. The following lemma will be useful:

Lemma 3. For all fixed $t \in \mathbb{R}$ the map $z \mapsto g_{-t}(z)$ has the same distribution as the map $z \mapsto \hat{f}_t(z) - \xi(t)$.

Proof. Fix $t_0 \in \mathbb{R}$ an let

$$\hat{g}_t(z) := g_{t+t_0} \circ g_{t_0}^{-1}(z + \xi(t_0)) - \xi(t_0).$$

The generalized Proposition 1 gives that $(z,t) \mapsto \hat{g}_t(z)$ has the same distribution as $(z,t) \mapsto g_t(z)$. Hence $z \mapsto g_{-t_0}(z)$ has the same distribution as $z \mapsto \hat{g}_{-t_0}(z) = \hat{f}_{t_0}(z) - \xi(t_0)$.

Note that (1) gives

$$\partial_t \text{Im}(g_t(z)) = -\frac{2\text{Im}(g_t(z))}{|g_t(z) - \xi(t)|^2}$$
(4)

so $\operatorname{Im}(g_t(z))$ is monotone decreasing in t for every $z \in \mathbb{H}$. For $z \in \mathbb{H}$ and $u \in \mathbb{R}$ set

$$T_u = T_u(z) := \sup\{t \in \mathbb{R} : \operatorname{Im}(g_t(z)) \ge e^u\}.$$

We claim that for all $z \in \mathbb{H}$ a.s. $T_u \neq \pm \infty$. Put $\bar{\xi}(t) := \sup\{|\xi(s)| :\in [0,t]\}$ and note that by (1) we have $\partial_t |g_t(z)| \leq |\partial_t g_t(z)| = 2|g_t(z) - \xi(t)|^{-1} \leq 2(|g_t(z)| - \bar{\xi}(t))^{-1}$ whenever $|g_t(z)| > \bar{\xi}(t)$. This implies $|g_t(z)| \leq |z| + \bar{\xi}(t) + 2\sqrt{t}$ for all $t < \tau(z)$, since if this were not true, we would by continuity have the inverse inequality for all t in an interval $(t_0, t_1]$ and equality at t_0 and thus

$$\begin{aligned} |z| + \bar{\xi}(t_1) + 2\sqrt{t_1} &< |g_{t_1}(z)| = |g_{t_0}(z)| + \int_{t_0}^{t_1} \partial_t |g_t(z)| dt \\ &\leq |g_{t_0}(z)| + \int_{t_0}^{t_1} \frac{2}{|g_t(z)| - \bar{\xi}(t)} dt \\ &< |g_{t_0}(z)| + \int_{t_0}^{t_1} \frac{1}{\sqrt{t}} dt \\ &= |g_{t_0}(z)| + 2\sqrt{t_1} - 2\sqrt{t_0} \\ &= |z| + \bar{\xi}(t_0) + 2\sqrt{t_1} \end{aligned}$$

i.e. $\bar{\xi}(t_1) < \bar{\xi}(t_0)$, a contradiction. From (4) we then get

$$-\partial_t \log \operatorname{Im}(g_t(z)) = \frac{2}{|g_t(z) - \xi(t)|^2} \ge \frac{2}{(|z| + 2\bar{\xi}(t) + 2\sqrt{t})^2}$$

By the law of iterated logarithms, $\limsup_{t\to\infty} B_t/\sqrt{2t\log\log t} = 1$ a.s. which implies that the right hand side is not integrable over $[0,\infty)$ nor over $(-\infty,0]$. Hence a.s. we have $\lim_{t\to\pm\infty} \log \operatorname{Im}(g_t(z)) = \mp \infty$ and thus $|T_u| < \infty$.

We will need the formula

$$\partial_t \log |g'_t(z)| = \operatorname{Re}\left(\frac{\partial_z \partial_t g_t(z)}{g'_t(z)}\right) = \operatorname{Re}\left(\frac{1}{g'_t(z)}\partial_z \frac{2}{g_t(z) - \xi(t)}\right)$$
$$= -2\operatorname{Re}\left(\frac{1}{(g_t(z) - \xi(t))^2}\right).$$
(5)

Set $u = u(z, t) := \log \operatorname{Im}(g_t(z))$ and remember that by (4) we have

$$\partial_t u = -\frac{2}{|g_t(z) - \xi(t)|^2}.$$
(6)

By (5) and (6) we get

$$\partial \log |g_t'(z)| = \frac{\operatorname{Re}((g_t(z) - \xi(t))^2)}{|g_t(z) - \xi(t)|^2}.$$
(7)

Now, fix some $\hat{z} = \hat{x} + i\hat{y} \in \mathbb{H}$. For every $u \in \mathbb{R}$, let

$$z(u) := g_{T_u(\hat{z})}(\hat{z}) - \xi(T_u), \quad x(u) := \operatorname{Re}(z(u))$$
$$y(u) := \operatorname{Im}(z(u)) = e^u, \quad \psi(u) := \frac{\hat{y}}{y(u)} |g'_{T_u}(\hat{z})|.$$

Theorem 4. Let $\hat{z} = \hat{x} + i\hat{y} \in \mathbb{H}$ as above. Assume $\hat{y} \neq 1$ and set $\nu := -sign(\log \hat{y})$. Let $b \in \mathbb{R}$ and define a and λ by

$$a := 2b + \nu \kappa b(1-b)/2, \quad \lambda := 4b + \nu \kappa b(1-2b)/2.$$
 (8)

Set

$$F(\hat{z}) = F_b(\hat{z}) := \hat{y}^a \mathbf{E} \left[(1 + x(0)^2)^b |g_{T_0(\hat{z})}(\hat{z})|^a \right].$$

Then

$$F(\hat{z}) = (1 + (\hat{x}/\hat{y})^2)^b \hat{y}^{\lambda}.$$

Proof. Note that by (6) we have

$$du = -2|z|^{-2}dt$$

Put

$$\hat{B}(u) := -\sqrt{2/\kappa} \int_{t=0}^{T_u} |z|^{-1} d\xi.$$

Then \hat{B} is a Brownian motion w.r.t. $\int_0^t 2|z|^{-2}ds = -u$ and hence also w.r.t. u. Set $M_u := \psi(u)\hat{F}(z(u))$, where $\hat{F}(x+iy) = (1+(x/y)^2)^b y^{\lambda}$. Itô's formula gives

$$dM_u = -2M\frac{bx}{x^2 + y^2}d\xi = \sqrt{2\kappa}M\frac{bx}{\sqrt{x^2 + y^2}}d\hat{B}$$

Hence M is a local martingale and Lemma 2 tells us that M is a martingale. Thus we have

$$\hat{F}(\hat{z}) = \psi(\hat{u})^a \hat{F}(\hat{z}) = \mathbf{E}[\psi(0)^a \hat{F}(z(0))] = \hat{y}^a \mathbf{E} \left[(1 + x(0)^2)^b |g_{T_0(\hat{z})}(\hat{z})|^a \right].$$

With the aid of Theorem 4 we can get the following estimates for $|\hat{f}'_t|$:

Corollary 5. Let $b \in [0, 1 + \frac{4}{\kappa}]$, and define λ and a as in (8) with $\nu = 1$. There is a constant $C(\kappa, b)$, depending only on κ and b, such that the following estimate holds for all $t \in [0, 1], y, \delta \in (0, 1]$ and $x \in \mathbb{R}$:

$$\mathbf{P}\left[|\hat{f}'_t(x+iy)| \ge \delta y^{-1}\right] \le C(\kappa, b)(1+x^2/y^2)^b(y/\delta)^\lambda \theta(\delta, a-\lambda),\tag{9}$$

MIT 2009

where

$$\theta(\delta, s) = \begin{cases} \delta^{-s} & \text{if } s > 0, \\ 1 + |\log \delta| & \text{if } s = 0, \\ 1 & \text{if } s < 0. \end{cases}$$

Proof. Note that the condition on b is equivalent to $a \ge 0$. If we make sure $C(\kappa, b) \ge 1$ then the right hand side is at least 1 when $\delta \le y$ so we may assume that $\delta > y$. Take z = x + iy. By Lemma 3, $\hat{f}'_t(z)$ has the same distribution as $g'_{-t}(z)$. We put $u_1 := \log \operatorname{Im}(g_{-t}(x+iy))$ and observe that

$$\frac{|g'_{-t}(z)|}{|g'_{T_u(z)}(z)|} \le e^{|u-u_1|},$$

since $|\partial_u \log |g'_t(z)|| \le 1$ by (7). Because $t, y \le 1$, there is a constant $c \ge 1$ such that $u_1 \le c$. Therefore,

$$\mathbf{P}\left[|g'_{-t}(z)| \ge e^c \delta y^{-1}\right] \le \sum_{j=\lceil \log y \rceil}^{0} \mathbf{P}\left[|g'_{T_j(z)}(z)| \ge \delta y^{-1}\right],$$

since $\log y \leq u_1 \leq c$ implies there is an integer j between $\lceil \log y \rceil$ and 0 such that $|j-u_1| \leq c$. By the Schwarz lemma, $y|g'(z)| \leq \operatorname{Im}(g(z))$ if $g : \mathbb{H} \to \mathbb{H}$ is holomorphic, so the above gives

$$\mathbf{P}\left[|g'_{-t}(z)| \ge e^c \delta y^{-1}\right] \le \sum_{j=\lceil \log \delta \rceil}^0 \mathbf{P}\left[|g'_{T_j(z)}(z)| \ge \delta y^{-1}\right].$$
(10)

By scale invariance, $g'_{T_j(z)}(z)$ has the same distribution as $g'_{T_0(e^{-j}z)}(e^{-j}z)$. Hence

$$\mathbf{E}\left[y^{a}e^{-ja}|g_{T_{j}(z)}'(z)|^{a}\right] = y^{a}e^{-ja}\mathbf{E}\left[|g_{T_{0}(e^{-j}z)}'(e^{-j}z)|^{a}\right] \le F_{b}(e^{-j}z),$$

where F_b is as in Theorem 4. Thus we get

$$\begin{aligned} \mathbf{P}\left[|g_{T_{j}(z)}'(z)| \geq \delta y^{-1}\right] &= \mathbf{P}\left[|g_{T_{j}(z)}'(z)|^{a}y^{a}\delta^{-a} \geq 1\right] \\ &\leq \mathbf{E}\left[|g_{T_{j}(z)}'(z)|^{a}y^{a}\delta^{-a}\right] \\ &\leq \delta^{-a}e^{ja}F_{b}(e^{-j}z). \end{aligned}$$

Since $j \ge \log \delta > \log y$ the imaginary part of $e^{-j}z$ remains below 1 so we get by Theorem 4

$$F_b(e^{-j}z) = (1 + x^2/y^2)^b e^{-j\lambda} y^{\lambda}.$$

Consequently, by (10)

$$\mathbf{P}\left[|g_{-t}'(z)| \ge e^c \delta y^{-1}\right] \le (1 + x^2/y^2)^b \delta^{-a} y^\lambda \sum_{j=\lceil \log \delta \rceil}^0 e^{j(a-\lambda)}.$$

 $\mathrm{MIT}\ 2009$

If $a = \lambda$, the sum is bounded by $1 + |\log \delta| = \theta(\delta, 0)$. If $a > \lambda$, the sum is bounded by the constant $(1 - e^{\lambda - a})^{-1}$, which only depends on κ and b, and $\theta(\delta, a - \lambda) = \delta^{\lambda - a}$. If $a < \lambda$ the sum is bounded by $(1 - e^{a-\lambda})^{-1}\delta^{a-\lambda}$ and $\theta(\delta, a - \lambda) = 1$. Therefore, if we put $\hat{C}(\kappa, b) = 1 + |a - \lambda|(1 - e^{-|a-\lambda|})^{-1}$ we have for all choices of δ, y

$$\mathbf{P}\left[|\hat{f}'_t(z)| \ge e^c \delta y^{-1}\right] \le \hat{C}(\kappa, b)(1 + x^2/y^2)^b (y/\delta)^\lambda \theta(\delta, a - \lambda).$$

Put $\delta' = e^{-c}\delta$ to get (9) with $C(\kappa, b) = \hat{C}(\kappa, b)(e^{ca} + e^{c\lambda}(c+1)).$

The following theorem shows that $\hat{f}_t(0) = f_t(\xi(t))$ exists as a radial limit and is continuous.

Theorem 6. Define

$$H(y,t) := \hat{f}_t(iy), \quad y > 0, t \in [0,\infty).$$

If $\kappa \neq 8$, then a.s. H(y,t) extends continuously to $[0,\infty) \times [0,\infty)$.

Proof. Fix $\kappa \neq 8$. By scale invariance, it suffices to show continuity of H on $[0, \infty) \times [0, 1)$. For $j, k \in \mathbb{N}$, with $k < 2^{2j}$ we define the rectangle

$$R(j,k) := [2^{-j-1}, 2^{-j}] \times [k2^{-2j}, (k+1)2^{-2j}],$$

and put

$$d(j,k) := \operatorname{diam} H(R(j,k)).$$

We take $b = (8 + \kappa)/(4\kappa) < 1 + 4/\kappa$ and let a and λ be given by (8) with $\nu = 1$. Then $\lambda = 2 + (\kappa - 8)^2/(16\kappa) > 2$ so we can pick σ such that $0 < \sigma < (\lambda - 2)/\max\{a, \lambda\}$. To begin with, we want to show that

$$\sum_{j=0}^{\infty} \sum_{k=0}^{2^{2j}-1} \mathbf{P}[d(j,k) \ge 2^{-j\sigma}] < \infty.$$
(11)

Fix a pair (j, k). Set $t_0 = (k+1)2^{-2j}$ and inductively,

$$t_{n+1} := \sup\{t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j}\}.$$

Let N be the least $n \in \mathbb{N}$ such that $t_n \leq t_0 - 2^{-2j}$, set $t_\infty := t_0 - 2^{-2j} = k 2^{-2j}$ and

$$\hat{t}_n := \max\{t_n, t_\infty\}.$$

The scaling property of Brownian motion shows that there is a constant $\rho < 1$, independent of j and k, such that $\mathbf{P}[N > 1] = \rho$ and the Markov property gives $\mathbf{P}[N \ge m+1 \mid N \ge m] \le \rho$. Thus, $\mathbf{P}[N > m] = \rho^m$.

For every $s \ge 0$, the map \hat{f}_s is measurable with respect to the σ -algebra generated by $\xi(t)$ for $t \in [0, s]$ while \hat{t}_n is determined by $\xi(t)$ for $t \ge t_n$. The strong Markov property then gives for every $n \in \mathbb{N}, s \in [t_\infty, t_0]$ and $\delta > 0$

$$\mathbf{P}\left[|\hat{f}'_{\hat{t}_n}(i2^{-j})| > \delta \mid \hat{t}_n = s\right] = \mathbf{P}\left[|\hat{f}'_s(i2^{-j}) > \delta\right]$$

which yields

$$\mathbf{P}\left[|\hat{f}'_{\hat{t}_n}(i2^{-j})| > \delta \mid \hat{t}_n > t_{\infty}\right] = \mathbf{E}\left[\mathbf{P}\left[|\hat{f}'_{\hat{t}_n}(i2^{-j})| > \delta \mid \hat{t}_n\right] \mid \hat{t}_n > t_{\infty}\right]$$
$$\leq \sup_{s \in (0,1]} \mathbf{P}\left[|\hat{f}'_s(i2^{-j})| > \delta\right].$$

Therefore, we get the estimate

$$\mathbf{P}\left[\exists n \in \mathbb{N} : |\hat{f}_{\hat{t}_{n}}'(i2^{-j}) > \delta\right] \\
\leq \mathbf{P}\left[|\hat{f}_{\hat{t}_{\infty}}'(i2^{-j})| > \delta\right] + \sum_{n=0}^{\infty} \mathbf{P}[\hat{t}_{n} > t_{\infty}] \mathbf{P}\left[|\hat{f}_{\hat{t}_{n}}'(i2^{-j})| > \delta \mid \hat{t}_{n} > t_{\infty}\right] \\
\leq (1 + \mathbf{E}[N]) \sup_{s \in (0,1]} \mathbf{P}\left[|\hat{f}_{s}'(i2^{-j})| > \delta\right] \\
\leq O(1) \sup_{s \in (0,1]} \mathbf{P}\left[|\hat{f}_{s}'(i2^{-j})| > \delta\right].$$
(12)

Note that $a - \lambda = (\kappa^2 - 64)/(32\kappa)$. If $\kappa > 8$, then $a > \lambda$ and Corollary 5 gives

$$\sup_{s \in (0,1]} \mathbf{P}\left[|\hat{f}'_s(i2^{-j})| > 2^j 2^{-j\sigma} / j^2 \right] \le O(1) 2^{-j(\lambda - a\sigma)} j^{2a} \le O(1) 2^{-j(2+\epsilon)}, \tag{13}$$

for some $\epsilon = \epsilon(\kappa) > 0$, since $\sigma < (\lambda - 2)/a$. If $\kappa < 8$, then $a < \lambda$ and Corollary 5 gives

$$\sup_{s \in (0,1]} \mathbf{P}\left[|\hat{f}'_s(i2^{-j})| > 2^j 2^{-j\sigma} / j^2 \right] \le O(1) 2^{-j(\lambda - \lambda \sigma)} j^{2\lambda} \le O(1) 2^{-j(2+\epsilon)}, \tag{14}$$

for some $\epsilon = \epsilon(\kappa) > 0$, since $\sigma < (\lambda - 2)/\lambda$. Now let S be the rectangle

$$S := \{ x + iy : |x| \le 2^{-j+3}, y \in [2^{-j-1}, 2^{-j+3}] \}$$

We want to show that

$$H(R(j,k)) \subset \bigcup_{n=0}^{N} \hat{f}_{\hat{t}_n}(S)$$
(15)

MIT 2009

and

$$\hat{f}_{\hat{t}_n}(S) \cap \hat{f}_{\hat{t}_{n+1}}(S) \neq \emptyset \quad \forall n \in \mathbb{N}.$$
(16)

Let $t \in [\hat{t}_{n+1}, \hat{t}_n]$ and $y \in [2^{-j-1}, 2^{-j}]$. Then we can write

$$H(y,t) = \hat{f}_t(iy) = \hat{f}_{\hat{t}_{n+1}} \left(g_{\hat{t}_{n+1}}(\hat{f}_t(iy)) - \xi(\hat{t}_{n+1}) \right).$$

We will prove (15) by showing that $g_{\hat{t}_{n+1}}(\hat{f}_t(iy)) - \xi(\hat{t}_{n+1}) \in S$. Define $\phi(s) = g_s(\hat{f}_t(iy))$ for $s \leq t$. Then $\phi(t) = iy + \xi(t)$ and by (1)

$$\partial_s \phi(s) = 2(\phi(s) - \xi(s))^{-1}.$$

Note that $\partial_s \operatorname{Im}(\phi(s)) < 0$ and hence $\operatorname{Im}(\phi(s)) \ge \operatorname{Im}(\phi(t)) \ge 2^{-j-1}$. This gives $|\partial_s \phi(s)| \le 2^{j+2}$ and since $|t - \hat{t}_{n+1}| \le 2^{-2j}$ we then get $|\phi(\hat{t}_{n+1}) - \phi(t)| \le 2^{2-j}$. Since $|\xi(t) - \xi(\hat{t}_{n+1})| \le 2^{1-j}$ we get

$$g_{\hat{t}_{n+1}}(\hat{f}_t(iy)) - \xi(\hat{t}_{n+1})| = \phi(\hat{t}_{n+1}) - \phi(t) + iy + \xi(t) - \xi(\hat{t}_{n+1}) \in S$$

which gives $\hat{f}_t(iy) \in \hat{f}_{\hat{t}_{n+1}}(S)$ and verifies (15). If we take $t = \hat{t}_n$ in the above we get $\hat{f}_{\hat{t}_n}(iy) \in \hat{f}_{\hat{t}_{n+1}}(S)$ which verifies (16). By the Koebe distortion theorem ([Pom92, 1.3]) $|\hat{f}'_t(z)|/|\hat{f}'_t(i2^{-j})|$ is bounded by some constant (independent of j and t) if $z \in S$ and thus we have

diam
$$(\hat{f}_t(S)) \le O(1)2^{-j} |\hat{f}'_t(i2^{-j})|.$$

Therefore, we get from (15) and (16)

$$d(j,k) \leq \sum_{n=0}^{N} \operatorname{diam}(\hat{f}_{\hat{t}_{n}}(S)) \leq O(1)2^{-j} \sum_{n=0}^{N} |\hat{f}'_{\hat{t}_{n}}(i2^{-j})| \\ \leq O(1)2^{-j}N \max\{|\hat{f}'_{\hat{t}_{n}}(i2^{-j})| : n = 0, 1, \dots, N\}.$$
(17)

By (12), (13) and (14) we get

$$\begin{split} \mathbf{P}[d(j,k) > 2^{-j\sigma}] &\leq \mathbf{P}\left[O(1)2^{-j}N\max\{|\hat{f}'_{\hat{t}_n}(i2^{-j})| : n = 0, 1, \dots, N\} > 2^{-j\sigma}\right] \\ &\leq \mathbf{P}[O(1)N > j^2] + \mathbf{P}\left[\max\{|\hat{f}'_{\hat{t}_n}(i2^{-j})| : n = 0, 1, \dots, N\} > 2^j 2^{-j\sigma}/j^2\right] \\ &\leq \rho^{j^2/O(1)} + O(1)2^{-j(2+\epsilon)} \leq O(1)2^{-j(2+\epsilon)} \end{split}$$

which proves (11).

A consequence of (11) is that a.s. there are at most finitely many pairs $j, k \in \mathbb{N}$ with $k \leq 2^{2j} - 1$ such that $d(j,k) > 2^{-j\sigma}$. Thus we have $d(j,k) \leq C(\omega)2^{-j\sigma}$ for all j, k, where the constant $C(\omega)$ is random. Let (y',t') and (y'',t'') be points in $(0,1)^2$. Let j_1 be the largest integer less than min $\{-\log_2 y', -\log_2 y'', -\frac{1}{2}|t'-t''|\}$. Then $y', y'' < 2^{-j_1}$ and $|t'-t''| < 2^{-2j_1}$ so we get the estimate

$$|H(y',t') - H(y'',t'')| \le \sum_{j=j_1}^{\infty} (d(j,k'_j) + d(j,k''_j)) \le O(1)C(\omega)2^{-\sigma j_1},$$

where $R(j, k'_j)$ is a rectangle meeting the line t = t' and $R(j, k''_j)$ is a rectangle meeting the line t = t''. This shows that for every $t_0 \in [0, 1)$ the limit of H(y, t) as $(y, t) \to (0, t_0)$ exists and thereby extends the definition of H to a continuous function on $[0, \infty) \times [0, 1)$.

It follows from [LSW] that the theorem holds also when $\kappa = 8$.

Now we get a criterion for hulls to be generated by a continuous path.

Theorem 7. Let $\xi : [0, \infty) \to \mathbb{R}$ be continuous and let g_t be the corresponding solution to (1). Assume that $\beta(t) := \lim_{y \searrow 0} g_t^{-1}(\xi(t) + iy)$ exists and is continuous for all $t \in [0, \infty)$. Then g_t^{-1} extends continuously to $\overline{\mathbb{H}}$ and H_t is the unbounded connected component of $\mathbb{H} \setminus \beta([0, t])$ for every $t \in [0, \infty)$.

In the proof, we will need the following basic properties of conformal maps. Suppose $g: \Omega \to \mathbb{H}$ is a conformal homeomorphism. If $\alpha : [0,1) \to \Omega$ is a path such that the limit $l_1 = \lim_{t \neq 1} \alpha(t)$ exits, then $l_2 = \lim_{t \neq 1} g(\alpha(t))$ exists too. (It is important that \mathbb{H} is a nice domain.) Moreover, $\lim_{t \neq 1} g^{-1}(tl_2)$ exists and equals l_1 . Therefore, if $\tilde{\alpha} : [0,1) \to \Omega$ is another path such that $\lim_{t \neq 1} \tilde{\alpha}(t)$ exists and $\lim_{t \neq 1} g(\alpha(t)) = \lim_{t \neq 1} g(\tilde{\alpha}(t))$, then $\lim_{t \neq 1} \alpha(t) = \lim_{t \neq 1} \tilde{\alpha}(t)$. A proof of these statements can be found in [Pom92, Proposition 2.14] and [Ahl73, Theorem 3.5].

Proof. Let $S(t) \subset \overline{\mathbb{H}}$ be the set of limit points of $g_t^{-1}(t)$ as $t \to \xi(t)$ in \mathbb{H} . Fix $t_0 \geq 0$ and assume $z_0 \in S(t_0)$. We will show that $z_0 \in \overline{\beta([0, t_0))}$ and hence $z_0 \in \beta([0, t_0])$. Fix some $\epsilon > 0$. Put

$$t' := \sup\{t \in [0, t_0] : K_t \cap \overline{D(z_0, \epsilon)} = \emptyset\},\$$

where $D(z_0, \epsilon)$ is the open disk of radius ϵ about z_0 . To begin with, we show that

$$\beta(t') \in \overline{D(z_0, \epsilon)}.$$
(18)

Since $z_0 \in S(t_0)$, $D(z_0, \epsilon) \cap H_{t_0} \neq \emptyset$. Take $p \in D(z_0, \epsilon) \cap H_{t_0}$ and let $p' \in K_{t'} \cap \overline{D(z_0, \epsilon)}$ (this set is nonempty by the definition of t' and the fact that $z_0 \in K_{t_0}$). Let p'' be the first point of the line segment from p to p' which is in $K_{t'}$. We will show that $\beta(t') = p''$. Let Lbe the line segment [p, p'') and note that $L \subset H_{t'}$. Then $g_{t'}(L)$ is a curve in \mathbb{H} terminating at a point $x \in \mathbb{R}$. If $x \neq \xi(t')$, then $g_t(L)$ terminates at points $x(t) \neq \xi(t)$ for all t < t'sufficiently close to t'. Because $g_{\tau}(p'')$ has to hit the singularity $\xi(\tau)$ at some time $\tau \leq t'$, this implies $p'' \in K_t$ for some t < t'. But this contradicts the definition of t' and hence shows that $x = \xi(t')$. Now $\beta(t') = p''$ follows because the conformal map g_t^{-1} of \mathbb{H} cannot have to different limits along two arcs with the same terminal point.

Now we have established (18) and since $\epsilon > 0$ was arbitrary, we conclude that $z_0 \in \overline{\beta([0, t_0))}$ and hence $z_0 \in \beta([0, t_0])$. This gives $S(t) \subset \beta([0, t])$ for all $t \ge 0$. Now we argue that H_t is the umbounded component of $\mathbb{H} \setminus \bigcup_{\tau \le t} S(\tau)$. First, H_t is connected and disjoint from $\overline{\bigcup_{\tau \le t} S(\tau)}$. On the other hand, as the argument in the previous paragraph shows, $\partial H_t \cap \mathbb{H}$ is contained in $\overline{\bigcup_{\tau \le t} S(\tau)}$. Therefore, H_t is the unbounded component of $\mathbb{H} \setminus \overline{\bigcup_{\tau \le t} S(\tau)} = \mathbb{H} \setminus \beta([0, 1])$. Since β is a continuous path, it follows from [Pom92, Theorem 2.1] that g_t^{-1} extends continuously to $\overline{\mathbb{H}}$, which also proves that $S(t) = \{\beta(t)\}$.

Now we have all the results needed to prove:

Theorem 8. The following statement holds almost surely. For every $t \ge 0$ the limit

$$\gamma(t) := \lim_{z \to 0, z \in \mathbb{H}} \hat{f}_t(z)$$

exists, $\gamma : [0, \infty) \to \overline{\mathbb{H}}$ is a continuous path and H_t is the unbounded component of $\mathbb{H} \setminus \gamma([0, t]]$.

Proof. By Theorem 6, a.s. $\lim_{y \searrow 0} \hat{f}_t(iy)$ exists for all t and is continuous. Therefore we can apply Theorem 7 and the result follows.

References

- [Ahl73] Lars V. Ahlfors. Conformal invariants: topics in geometric function theory. McGraw-Hill Book Co., New York, 1973. McGraw-Hill Series in Hicher Mathematics.
- [Pom92] Ch. Pommerenke. Boundary behaviour of conformal maps. Springer-Verlag, Berlin, 1992.
- [LSW] Gregory F. Lawler, Oded Schramm, and Wendelin Werner. Conformal invariance of planar loop-erased random walks and uniform spanning trees, arXiv:math.PR/0112234
- [RS] Steffen Rohde and Oded Schramm. Basic properties of SLE, arXiv:math/0106036v4.
- [RY99] Daniel Revuz and Marc Yor. Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, third edition, 1999.