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Abstract

This is a final project in the class 18.177 - Stochastic Processes in Physics. A

proof of the fact that the SLEκ trace is a continuous path will be given in the case

κ 6= 8, following the argument in [RS].

Let’s review the definition of chordal SLEκ. For κ > 0 let ξ(t) :=
√
κBt where Bt is

Brownian motion on R started from B0 = 0. For each z ∈ H \ {0} we let gt(z) be the

solution of the ODE

∂tgt(z) =
2

gt(z)− ξ(t)
, g0(z) = z (1)

which exists as long as gt(z) − ξ(t) is bounded away from zero. Denote by τ(z) the first

time τ such that 0 is a limit point of gt(z)− ξ(t) as t↗ τ . Set

Ht := {z ∈ H : τ(z) > t}, Kt := {z ∈ H : τ(t) ≤ t}.

For all t ≥ 0, Ht is open and Kt is compact. The parameterized collection of maps

(gt : t ≥ 0) is called chordal SLEκ. For every t ≥ 0 the map gt : Ht → H is a conformal

homeomorphism and Ht is the unbounded component of H \Kt.

Two important basic properties of chordal SLE are summarized in the following propo-

sition.

Proposition 1. 1. Scaling property: The process (z, t) 7→ g̃t = α−1/2gαt(
√
αz) has the

same law as the process (z, t) 7→ gt(z).

2. Let t0 > 0. The map (z, t) 7→ ĝt(z) := gt+t0 ◦ g−1
t0 (z + ξ(t0))− ξ(t0) has the same las

as the map (z, t) 7→ gt(z); moreover, (ĝt)t≥0 is independent of (g(t))0≤t≤t0.
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Proof. We have

∂tg̃t(z) =
2

g̃t(z)− α−1/2ξ(αt)
, ∂tĝt(z) =

2

ĝt(z)− (ξ(t+ t0)− ξ(t0))
so the result follows from the scaling property and translation invariance of Brownian

motion. The independence claim follows from the Markov property of Brownian motion.

We will use the following notation

ft := g−1
t , f̂t(z) = ft(z + ξ(t))

The trace γ of SLE is defined by

γ(t) := lim
z→0

f̂t(z)

where z tends to 0 within H. If the limit does not exist, let γ(t) denote the set of all limit

points. We say that the SLE trace is a continuous path if the limit exists for every t and

γ(t) is a continuous function of t. Our goal is to show precisely this.

The following technical lemma gives a sufficient condition for a local martingale to be

a martingale.

Lemma 2. Let Bt be a standard one dimensional Brownian motion and let at be a pro-

gressive real valued locally bounded process. Suppose Xt satisfies

Xt =

∫ t

0

asdBs

and that for every t > 0 there is a finite constant c(t) such that

a2
s ≤ c(t)X2

s + c(t) (2)

for all s ∈ [0, t] a.s. Then X is a martingale.

Proof. We already know that X is a local martingale. Take a large M > 0 and let T :=

inf{t : |Xt| ≥ M}. Then Yt := Xt∧T is a martingale. Put f(t) := E[Y 2
t ]. Itô’s isometry

then gives

f(t′) = E

[∫ t′

0

a2
s1s<Tds

]
.
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Our assumption (2) therefore implies that for t′ ∈ [0, t]

f(t′) ≤ c(t)t′ + c(t)

∫ t′

0

f(s)ds, (3)

since (1 + X2
s )1s<T ≤ 1 + Y 2

s . If t′ is the least s ∈ [0, t] such that f(s) ≥ e2c(t)s, we get by

(3)

e2c(t)t
′ ≤ f(t′) ≤ c(t)t′ + c(t)

∫ t′

0

f(s)ds < c(t)t′ + c(t)

∫ t′

0

e2c(t)sds

= c(t)t′ + 1
2
e2c(t)t

′ − 1
2

i.e. e2c(t)t
′
< 2c(t)t′ − 1, a contradiction. Hence f(s) < e2c(t)s for all s ∈ [0, t]. Thus,

E[〈X,X〉t∧T ] = E[〈Y, Y 〉t] = E[Y 2
t ] = f(t) < e2c(t)t.

By letting M → ∞ we get by monotone convergence E[〈X,X〉t] ≤ e2c(t)t < ∞. Hence X

is a martingale (by [RY99, IV.1.25]).

We will need estimates for the moments of |f̂ ′t |. For convenience, we let Bt be a two-

sided Brownian motion. Equation (1) can also be solved for negative t and gt is a conformal

map from H into a subset of H when t < 0. Note that Proposition 1 also holds in this

generalized setting. The following lemma will be useful:

Lemma 3. For all fixed t ∈ R the map z 7→ g−t(z) has the same distribution as the map

z 7→ f̂t(z)− ξ(t).

Proof. Fix t0 ∈ R an let

ĝt(z) := gt+t0 ◦ g−1
t0

(z + ξ(t0))− ξ(t0).

The generalized Proposition 1 gives that (z, t) 7→ ĝt(z) has the same distribution as (z, t) 7→
gt(z). Hence z 7→ g−t0(z) has the same distribution as z 7→ ĝ−t0(z) = f̂t0(z)− ξ(t0).

Note that (1) gives

∂tIm(gt(z)) = − 2Im(gt(z))

|gt(z)− ξ(t)|2
(4)
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so Im(gt(z)) is monotone decreasing in t for every z ∈ H. For z ∈ H and u ∈ R set

Tu = Tu(z) := sup{t ∈ R : Im(gt(z)) ≥ eu}.

We claim that for all z ∈ H a.s. Tu 6= ±∞. Put ξ̄(t) := sup{|ξ(s)| :∈ [0, t]} and note

that by (1) we have ∂t|gt(z)| ≤ |∂tgt(z)| = 2|gt(z)− ξ(t)|−1 ≤ 2(|gt(z)| − ξ̄(t))−1 whenever

|gt(z)| > ξ̄(t). This implies |gt(z)| ≤ |z|+ ξ̄(t) + 2
√
t for all t < τ(z), since if this were not

true, we would by continuity have the inverse inequality for all t in an interval (t0, t1] and

equality at t0 and thus

|z|+ ξ̄(t1) + 2
√
t1 < |gt1(z)| = |gt0(z)|+

∫ t1

t0

∂t|gt(z)|dt

≤ |gt0(z)|+
∫ t1

t0

2

|gt(z)| − ξ̄(t)
dt

< |gt0(z)|+
∫ t1

t0

1√
t
dt

= |gt0(z)|+ 2
√
t1 − 2

√
t0

= |z|+ ξ̄(t0) + 2
√
t1

i.e. ξ̄(t1) < ξ̄(t0), a contradiction. From (4) we then get

−∂t log Im(gt(z)) =
2

|gt(z)− ξ(t)|2
≥ 2

(|z|+ 2ξ̄(t) + 2
√
t)2
.

By the law of iterated logarithms, lim supt→∞Bt/
√

2t log log t = 1 a.s. which implies that

the right hand side is not integrable over [0,∞) nor over (−∞, 0]. Hence a.s. we have

limt→±∞ log Im(gt(z)) = ∓∞ and thus |Tu| <∞.

We will need the formula

∂t log |g′t(z)| = Re

(
∂z∂tgt(z)

g′t(z)

)
= Re

(
1

g′t(z)
∂z

2

gt(z)− ξ(t)

)
= −2Re

(
1

(gt(z)− ξ(t))2

)
. (5)

Set u = u(z, t) := log Im(gt(z)) and remember that by (4) we have

∂tu = − 2

|gt(z)− ξ(t)|2
. (6)

By (5) and (6) we get

∂ log |g′t(z)| = Re((gt(z)− ξ(t))2)

|gt(z)− ξ(t)|2
. (7)
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Now, fix some ẑ = x̂+ iŷ ∈ H. For every u ∈ R, let

z(u) := gTu(ẑ)(ẑ)− ξ(Tu), x(u) := Re(z(u))

y(u) := Im(z(u)) = eu, ψ(u) :=
ŷ

y(u)
|g′Tu

(ẑ)|.

Theorem 4. Let ẑ = x̂ + iŷ ∈ H as above. Assume ŷ 6= 1 and set ν := −sign(log ŷ). Let

b ∈ R and define a and λ by

a := 2b+ νκb(1− b)/2, λ := 4b+ νκb(1− 2b)/2. (8)

Set

F (ẑ) = Fb(ẑ) := ŷaE
[
(1 + x(0)2)b|gT0(ẑ)(ẑ)|a

]
.

Then

F (ẑ) =
(
1 + (x̂/ŷ)2

)b
ŷλ.

Proof. Note that by (6) we have

du = −2|z|−2dt

Put

B̂(u) := −
√

2/κ

∫ Tu

t=0

|z|−1dξ.

Then B̂ is a Brownian motion w.r.t.
∫ t

0
2|z|−2ds = −u and hence also w.r.t. u. Set

Mu := ψ(u)F̂ (z(u)), where F̂ (x+ iy) = (1 + (x/y)2)
b
yλ. Itô’s formula gives

dMu = −2M
bx

x2 + y2
dξ =

√
2κM

bx√
x2 + y2

dB̂.

Hence M is a local martingale and Lemma 2 tells us that M is a martingale. Thus we have

F̂ (ẑ) = ψ(û)aF̂ (ẑ) = E[ψ(0)aF̂ (z(0))] = ŷaE
[
(1 + x(0)2)b|gT0(ẑ)(ẑ)|a

]
.

With the aid of Theorem 4 we can get the following estimates for |f̂ ′t |:

Corollary 5. Let b ∈ [0, 1 + 4
κ
], and define λ and a as in (8) with ν = 1. There is a

constant C(κ, b), depending only on κ and b, such that the following estimate holds for all

t ∈ [0, 1], y, δ ∈ (0, 1] and x ∈ R:

P
[
|f̂ ′t(x+ iy)| ≥ δy−1

]
≤ C(κ, b)(1 + x2/y2)b(y/δ)λθ(δ, a− λ), (9)
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where

θ(δ, s) =


δ−s if s > 0,

1 + | log δ| if s = 0,

1 if s < 0.

Proof. Note that the condition on b is equivalent to a ≥ 0. If we make sure C(κ, b) ≥ 1 then

the right hand side is at least 1 when δ ≤ y so we may assume that δ > y. Take z = x+ iy.

By Lemma 3, f̂ ′t(z) has the same distribution as g′−t(z). We put u1 := log Im(g−t(x + iy))

and observe that
|g′−t(z)|
|g′Tu(z)(z)|

≤ e|u−u1|,

since |∂u log |g′t(z)|| ≤ 1 by (7). Because t, y ≤ 1, there is a constant c ≥ 1 such that u1 ≤ c.

Therefore,

P
[
|g′−t(z)| ≥ ecδy−1

]
≤

0∑
j=dlog ye

P
[
|g′Tj(z)

(z)| ≥ δy−1
]
,

since log y ≤ u1 ≤ c implies there is an integer j between dlog ye and 0 such that |j−u1| ≤ c.

By the Schwarz lemma, y|g′(z)| ≤ Im(g(z)) if g : H→ H is holomorphic, so the above gives

P
[
|g′−t(z)| ≥ ecδy−1

]
≤

0∑
j=dlog δe

P
[
|g′Tj(z)

(z)| ≥ δy−1
]
. (10)

By scale invariance, g′Tj(z)
(z) has the same distribution as g′T0(e−jz)(e

−jz). Hence

E
[
yae−ja|g′Tj(z)

(z)|a
]

= yae−jaE
[
|g′T0(e−jz)(e

−jz)|a
]
≤ Fb(e

−jz),

where Fb is as in Theorem 4. Thus we get

P
[
|g′Tj(z)

(z)| ≥ δy−1
]

= P
[
|g′Tj(z)

(z)|ayaδ−a ≥ 1
]

≤ E
[
|g′Tj(z)

(z)|ayaδ−a
]

≤ δ−aejaFb(e
−jz).

Since j ≥ log δ > log y the imaginary part of e−jz remains below 1 so we get by Theorem 4

Fb(e
−jz) = (1 + x2/y2)be−jλyλ.

Consequently, by (10)

P
[
|g′−t(z)| ≥ ecδy−1

]
≤ (1 + x2/y2)bδ−ayλ

0∑
j=dlog δe

ej(a−λ).
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If a = λ, the sum is bounded by 1 + | log δ| = θ(δ, 0). If a > λ, the sum is bounded by

the constant (1 − eλ−a)−1, which only depends on κ and b, and θ(δ, a − λ) = δλ−a. If

a < λ the sum is bounded by (1 − ea−λ)−1δa−λ and θ(δ, a − λ) = 1. Therefore, if we put

Ĉ(κ, b) = 1 + |a− λ|(1− e−|a−λ|)−1 we have for all choices of δ, y

P
[
|f̂ ′t(z)| ≥ ecδy−1

]
≤ Ĉ(κ, b)(1 + x2/y2)b(y/δ)λθ(δ, a− λ).

Put δ′ = e−cδ to get (9) with C(κ, b) = Ĉ(κ, b)(eca + ecλ(c+ 1)).

The following theorem shows that f̂t(0) = ft(ξ(t)) exists as a radial limit and is contin-

uous.

Theorem 6. Define

H(y, t) := f̂t(iy), y > 0, t ∈ [0,∞).

If κ 6= 8, then a.s. H(y, t) extends continuously to [0,∞)× [0,∞).

Proof. Fix κ 6= 8. By scale invariance, it suffices to show continuity of H on [0,∞)× [0, 1).

For j, k ∈ N, with k < 22j we define the rectangle

R(j, k) := [2−j−1, 2−j]× [k2−2j, (k + 1)2−2j],

and put

d(j, k) := diam H(R(j, k)).

We take b = (8 + κ)/(4κ) < 1 + 4/κ and let a and λ be given by (8) with ν = 1. Then

λ = 2 + (κ − 8)2/(16κ) > 2 so we can pick σ such that 0 < σ < (λ − 2)/max{a, λ}. To

begin with, we want to show that

∞∑
j=0

22j−1∑
k=0

P[d(j, k) ≥ 2−jσ] <∞. (11)

Fix a pair (j, k). Set t0 = (k + 1)2−2j and inductively,

tn+1 := sup{t < tn : |ξ(t)− ξ(tn)| = 2−j}.

Let N be the least n ∈ N such that tn ≤ t0 − 2−2j, set t∞ := t0 − 2−2j = k2−2j and

t̂n := max{tn, t∞}.
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The scaling property of Brownian motion shows that there is a constant ρ < 1, independent

of j and k, such that P[N > 1] = ρ and the Markov property gives P[N ≥ m + 1 | N ≥
m] ≤ ρ. Thus, P[N > m] = ρm.

For every s ≥ 0, the map f̂s is measurable with respect to the σ-algebra generated by

ξ(t) for t ∈ [0, s] while t̂n is determined by ξ(t) for t ≥ tn. The strong Markov property

then gives for every n ∈ N, s ∈ [t∞, t0] and δ > 0

P
[
|f̂ ′t̂n(i2−j)| > δ | t̂n = s

]
= P

[
|f̂ ′s(i2−j) > δ

]
which yields

P
[
|f̂ ′t̂n(i2−j)| > δ | t̂n > t∞

]
= E

[
P
[
|f̂ ′t̂n(i2−j)| > δ | t̂n

]
| t̂n > t∞

]
≤ sup

s∈(0,1]

P
[
|f̂ ′s(i2−j)| > δ

]
.

Therefore, we get the estimate

P
[
∃n ∈ N : |f̂ ′t̂n(i2−j) > δ

]
≤ P

[
|f̂ ′t̂∞(i2−j)| > δ

]
+
∞∑
n=0

P[t̂n > t∞]P
[
|f̂ ′t̂n(i2−j)| > δ | t̂n > t∞

]
≤ (1 + E[N ]) sup

s∈(0,1]

P
[
|f̂ ′s(i2−j)| > δ

]
≤ O(1) sup

s∈(0,1]

P
[
|f̂ ′s(i2−j)| > δ

]
. (12)

Note that a− λ = (κ2 − 64)/(32κ). If κ > 8, then a > λ and Corollary 5 gives

sup
s∈(0,1]

P
[
|f̂ ′s(i2−j)| > 2j2−jσ/j2

]
≤ O(1)2−j(λ−aσ)j2a ≤ O(1)2−j(2+ε), (13)

for some ε = ε(κ) > 0, since σ < (λ− 2)/a. If κ < 8, then a < λ and Corollary 5 gives

sup
s∈(0,1]

P
[
|f̂ ′s(i2−j)| > 2j2−jσ/j2

]
≤ O(1)2−j(λ−λσ)j2λ ≤ O(1)2−j(2+ε), (14)

for some ε = ε(κ) > 0, since σ < (λ− 2)/λ. Now let S be the rectangle

S := {x+ iy : |x| ≤ 2−j+3, y ∈ [2−j−1, 2−j+3]}.

We want to show that

H(R(j, k)) ⊂
N⋃
n=0

f̂t̂n(S) (15)
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and

f̂t̂n(S) ∩ f̂t̂n+1
(S) 6= ∅ ∀n ∈ N. (16)

Let t ∈ [t̂n+1, t̂n] and y ∈ [2−j−1, 2−j]. Then we can write

H(y, t) = f̂t(iy) = f̂t̂n+1

(
gt̂n+1

(f̂t(iy))− ξ(t̂n+1)
)
.

We will prove (15) by showing that gt̂n+1
(f̂t(iy))− ξ(t̂n+1) ∈ S. Define φ(s) = gs(f̂t(iy)) for

s ≤ t. Then φ(t) = iy + ξ(t) and by (1)

∂sφ(s) = 2(φ(s)− ξ(s))−1.

Note that ∂sIm(φ(s)) < 0 and hence Im(φ(s)) ≥ Im(φ(t)) ≥ 2−j−1. This gives |∂sφ(s)| ≤
2j+2 and since |t− t̂n+1| ≤ 2−2j we then get |φ(t̂n+1)− φ(t)| ≤ 22−j. Since |ξ(t)− ξ(t̂n+1| ≤
21−j we get

gt̂n+1
(f̂t(iy))− ξ(t̂n+1)| = φ(t̂n+1)− φ(t) + iy + ξ(t)− ξ(t̂n+1) ∈ S

which gives f̂t(iy) ∈ f̂t̂n+1
(S) and verifies (15). If we take t = t̂n in the above we get

f̂t̂n(iy) ∈ f̂t̂n+1
(S) which verifies (16). By the Koebe distortion theorem ([Pom92, 1.3])

|f̂ ′t(z)|/|f̂ ′t(i2−j)| is bounded by some constant (independent of j and t) if z ∈ S and thus

we have

diam(f̂t(S)) ≤ O(1)2−j|f̂ ′t(i2−j)|.

Therefore, we get from (15) and (16)

d(j, k) ≤
N∑
n=0

diam(f̂t̂n(S)) ≤ O(1)2−j
N∑
n=0

|f̂ ′t̂n(i2−j)|

≤ O(1)2−jN max{|f̂ ′t̂n(i2−j)| : n = 0, 1, . . . , N}. (17)

By (12), (13) and (14) we get

P[d(j, k) > 2−jσ] ≤ P
[
O(1)2−jN max{|f̂ ′t̂n(i2−j)| : n = 0, 1, . . . , N} > 2−jσ

]
≤ P[O(1)N > j2] + P

[
max{|f̂ ′t̂n(i2−j)| : n = 0, 1, . . . , N} > 2j2−jσ/j2

]
≤ ρj

2/O(1) +O(1)2−j(2+ε) ≤ O(1)2−j(2+ε)

which proves (11).
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A consequence of (11) is that a.s. there are at most finitely many pairs j, k ∈ N with

k ≤ 22j−1 such that d(j, k) > 2−jσ. Thus we have d(j, k) ≤ C(ω)2−jσ for all j, k, where the

constant C(ω) is random. Let (y′, t′) and (y′′, t′′) be points in (0, 1)2. Let j1 be the largest

integer less than min{− log2 y
′,− log2 y

′′,−1
2
|t′−t′′|}. Then y′, y′′ < 2−j1 and |t′−t′′| < 2−2j1

so we get the estimate

|H(y′, t′)−H(y′′.t′′)| ≤
∞∑
j=j1

(d(j, k′j) + d(j, k′′j )) ≤ O(1)C(ω)2−σj1 ,

where R(j, k′j) is a rectangle meeting the line t = t′ and R(j, k′′j ) is a rectangle meeting the

line t = t′′. This shows that for every t0 ∈ [0, 1) the limit of H(y, t) as (y, t)→ (0, t0) exists

and thereby extends the definition of H to a continuous function on [0,∞)× [0, 1).

It follows from [LSW] that the theorem holds also when κ = 8.

Now we get a criterion for hulls to be generated by a continuous path.

Theorem 7. Let ξ : [0,∞)→ R be continuous and let gt be the corresponding solution to

(1). Assume that β(t) := limy↘0 g
−1
t (ξ(t) + iy) exists and is continuous for all t ∈ [0,∞).

Then g−1
t extends continuously to H and Ht is the unbounded connected component of

H \ β([0, t]) for every t ∈ [0,∞).

In the proof, we will need the following basic properties of conformal maps. Suppose

g : Ω → H is a conformal homeomorphism. If α : [0, 1) → Ω is a path such that the

limit l1 = limt↗1 α(t) exits, then l2 = limt↗1 g(α(t)) exists too. (It is important that H is

a nice domain.) Moreover, limt↗1 g
−1(tl2) exists and equals l1. Therefore, if α̃ : [0, 1) →

Ω is another path such that limt↗1 α̃(t) exists and limt↗1 g(α(t)) = limt↗1 g(α̃(t)), then

limt↗1 α(t) = limt↗1 α̃(t). A proof of these statements can be found in [Pom92, Proposition

2.14] and [Ahl73, Theorem 3.5].

Proof. Let S(t) ⊂ H be the set of limit points of g−1
t (t) as t → ξ(t) in H. Fix t0 ≥ 0 and

assume z0 ∈ S(t0). We will show that z0 ∈ β([0, t0)) and hence z0 ∈ β([0, t0]). Fix some

ε > 0. Put

t′ := sup{t ∈ [0, t0] : Kt ∩D(z0, ε) = ∅},
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where D(z0, ε) is the open disk of radius ε about z0. To begin with, we show that

β(t′) ∈ D(z0, ε). (18)

Since z0 ∈ S(t0), D(z0, ε) ∩ Ht0 6= ∅. Take p ∈ D(z0, ε) ∩ Ht0 and let p′ ∈ Kt′ ∩ D(z0, ε)

(this set is nonempty by the definition of t′ and the fact that z0 ∈ Kt0). Let p′′ be the first

point of the line segment from p to p′ which is in Kt′ . We will show that β(t′) = p′′. Let L

be the line segment [p, p′′) and note that L ⊂ Ht′ . Then gt′(L) is a curve in H terminating

at a point x ∈ R. If x 6= ξ(t′), then gt(L) terminates at points x(t) 6= ξ(t) for all t < t′

sufficiently close to t′. Because gτ (p
′′) has to hit the singularity ξ(τ) at some time τ ≤ t′,

this implies p′′ ∈ Kt for some t < t′. But this contradicts the definition of t′ and hence

shows that x = ξ(t′). Now β(t′) = p′′ follows because the conformal map g−1
t of H cannot

have to different limits along two arcs with the same terminal point.

Now we have established (18) and since ε > 0 was arbitrary, we conclude that z0 ∈
β([0, t0)) and hence z0 ∈ β([0, t0]). This gives S(t) ⊂ β([0, t]) for all t ≥ 0. Now we argue

that Ht is the umbounded component of H \
⋃
τ≤t S(τ). First, Ht is connected and disjoint

from
⋃
τ≤t S(τ). On the other hand, as the argument in the previous paragraph shows,

∂Ht ∩H is contained in
⋃
τ≤t S(τ). Therefore, Ht is the unbounded connected component

of H \
⋃
τ≤t S(τ) = H \ β([0, 1]). Since β is a continuous path, it follows from [Pom92,

Theorem 2.1] that g−1
t extends continuously to H, which also proves that S(t) = {β(t)}.

Now we have all the results needed to prove:

Theorem 8. The following statement holds almost surely. For every t ≥ 0 the limit

γ(t) := lim
z→0,z∈H

f̂t(z)

exists, γ : [0,∞) → H is a continuous path and Ht is the unbounded component of H \
γ([0, t]].

Proof. By Theorem 6, a.s. limy↘0 f̂t(iy) exists for all t and is continuous. Therefore we

can apply Theorem 7 and the result follows.
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