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Abstract

This is a final project in the class 18.177 - Stochastic Processes in Physics. A
proof of the fact that the SLE, trace is a continuous path will be given in the case

k # 8, following the argument in [RS].

Let’s review the definition of chordal SLE,. For k > 0 let £(t) := \/kB; where B, is
Brownian motion on R started from By = 0. For each z € H \ {0} we let g,(z) be the

solution of the ODE )
rgi(z) = @) =€) go(2) = 2z (1)

which exists as long as ¢;(z) — &(t) is bounded away from zero. Denote by 7(z) the first
time 7 such that 0 is a limit point of ¢,(z) — &(t) as ¢t /' 7. Set

Hy:={zcH:7(2)>t}, K, :={zcH:7(t) <t}

For all t > 0, H; is open and K; is compact. The parameterized collection of maps
(g¢ - t > 0) is called chordal SLE,. For every t > 0 the map ¢, : H; — H is a conformal
homeomorphism and H; is the unbounded component of H \ K.

Two important basic properties of chordal SLE are summarized in the following propo-

sition.

Proposition 1. 1. Scaling property: The process (z,t) — §; = a~2ga(y/az) has the

same law as the process (z,t) — gi(z).

2. Let tg > 0. The map (z,t) — Gi(2) == Gire, © gsy (2 + E(to)) — E(to) has the same las

as the map (z,t) — g:(z); moreover, (§i)i>o is independent of (g(t))o<i<t, -
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Proof. We have

~ o 2 g.(z) = 2
01ge(2) = ai(2) — a—1/2§(at)’ %9(2) gi(z) — (&(t +to) — &(to))

so the result follows from the scaling property and translation invariance of Brownian

motion. The independence claim follows from the Markov property of Brownian motion.
]

We will use the following notation

fo=gt filz) = Lz +£@1)

The trace ~ of SLE is defined by

y(t) = lim fi(2)

z—0

where z tends to 0 within H. If the limit does not exist, let «(¢) denote the set of all limit
points. We say that the SLE trace is a continuous path if the limit exists for every ¢ and

v(t) is a continuous function of ¢. Our goal is to show precisely this.

The following technical lemma gives a sufficient condition for a local martingale to be

a martingale.

Lemma 2. Let B, be a standard one dimensional Brownian motion and let a; be a pro-

gressive real valued locally bounded process. Suppose X; satisfies

t
Xt:/ GSdBS
0

and that for every t > 0 there is a finite constant c(t) such that
a2 < c(t) X2+ c(t) (2)
for all s € [0,t] a.s. Then X is a martingale.

Proof. We already know that X is a local martingale. Take a large M > 0 and let T" :=
inf{t : |X;| > M}. Then Y; := X, is a martingale. Put f(t) := E[Y}?]. Tt0’s isometry

then gives
t/
/ a§13<Tds .
0
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Our assumption (2) therefore implies that for ¢ € [0, ¢]

) <ot +eto) | " fs)ds, 3)

since (14 X2)1,or < 1+ Y2 If ' is the least s € [0,¢] such that f(s) > e*®)* we get by

(3)

2e(t)t!

IN

ft) <ct)t' + c(t)/o f(s)ds < c(t)t' + c(t)/o 2 (s

— 1,2¢(t)t 1
= c(t)t' + L2 1

ie. e2c®t 2¢(t)t’ — 1, a contradiction. Hence f(s) < 2605 for all s € 0,4]. Thus,
E[(X, X)r] = E[(Y.Y)i] = B[Y?] = /(1) < ",

By letting M — oo we get by monotone convergence E[(X, X )] < e < co. Hence X
is a martingale (by [RY99, IV.1.25]).
O

We will need estimates for the moments of | ft’| For convenience, we let B; be a two-
sided Brownian motion. Equation (1) can also be solved for negative ¢ and g, is a conformal
map from H into a subset of H when ¢t < 0. Note that Proposition 1 also holds in this

generalized setting. The following lemma will be useful:

Lemma 3. For all fized t € R the map z — g_4(z) has the same distribution as the map

z i fi(z) — £(1).

Proof. Fix ty € R an let

G1(2) = Graeo © gt_ol<z +&(to)) — &(to)-

The generalized Proposition 1 gives that (z,t) — §;(2) has the same distribution as (z,t) —
g:(2). Hence z — g_,,(2) has the same distribution as z — §_y, (2) = fi, (2) — &(t0)-
[l

Note that (1) gives

ddm(g,(2)) =

lge(2) =€)
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so Im(g:(#)) is monotone decreasing in ¢ for every z € H. For z € H and u € R set
T, =T,(z) :=sup{t € R:Im(g:(2)) > e"}.

We claim that for all z € H a.s. T, # #oo. Put £(t) := sup{|£(s)| :€ [0,#]} and note
that by (1) we have 0|g:(2)| < [9rg:(2)| = 2g:(2) — £()]7! < 2(|ga(2)| — £(1))7" whenever
9:(2)| > £(¢). This implies |g:(2)| < |2| + £(t) + 2v/t for all t < 7(2), since if this were not
true, we would by continuity have the inverse inequality for all ¢ in an interval (¢, ;] and
equality at £y and thus
t
A€ 42V < @) =lau()]+ [ 0ol

to

t1 2
90 (2)] + / Ok

t1

1
< g+ [ —dt

w Vi
= lgi(2)] + 2Vt — 2Vto

= |zl +&(to) +2vh

IA

i.e. £(t1) < &(to), a contradiction. From (4) we then get
_ 2 S 2
9:(2) = E@)2 T (2] + 26(t) + 2v/1)?°
By the law of iterated logarithms, limsup, . B;/v/2tloglogt = 1 a.s. which implies that

the right hand side is not integrable over [0,00) nor over (—oo,0]. Hence a.s. we have

—0;log Im(g,(2))

limy 4o log Im(g:(2)) = Foo and thus |T,| < .

We will need the formula

diloglg,(2)] = Re <M) = Re (g

1 2
0 - f(t))

9:(2)
1
- - () )
Set u = u(z,t) := logIm(g:(z)) and remember that by (4) we have
Ot — = (©)

a(z) — €@
By (5) and (6) we get
_ Re((g:(2) = €())*)

R e O g
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Now, fix some Z =z + iy € H. For every u € R, let

2(u) = g1, 5 (2) = E(T),  x(u) = Re(z(u))

u Y 1o
y(u) :=Im(z(u)) =¢e*, Y(u):=——|gp (2)|.
(u) (2(u)) (u) y(u)|Tu( )|
Theorem 4. Let 2 = & + iy € H as above. Assume y # 1 and set v := —sign(logy). Let
b € R and define a and X\ by

a:=2b+vkb(1—">0)/2, X:=4b+ vrb(1 —2b)/2. (8)

Set
P(2) = Fy(2) = "B [(1+ 2(0)2)gr ) (2)["]
Then

Proof. Note that by (6) we have

du = —2|z|%dt
Put .
B(u) := —\/Q/R/ 2| tde.
t=0
Then B is a Brownian motion w.r.t. ng\z]_st = —u and hence also w.r.t. u. Set
M, = (u)F(z(u)), where F(z + iy) = (1 + (z/y)2)" y*. 1td’s formula gives

bx bx -
dM, = —2M ———dé = 2k M ———=dB.
z? +y? ‘ T

Hence M is a local martingale and Lemma 2 tells us that M is a martingale. Thus we have

A

F(2) = 4(@)"F(2) = EW(0)"F(2(0))] = §°E [(1 +2(0)*) |9z, ()] -

With the aid of Theorem 4 we can get the following estimates for | f/|:

Corollary 5. Let b € [0,1 + 2], and define X and a as in (8) with v = 1. There is a
constant C(k,b), depending only on k and b, such that the following estimate holds for all
te€0,1],y,0 € (0,1] and x € R:

P||fi(z +iy)| = 5y—1] < Cr,b) (1 + 2 /y*)"(y/6) 05, a — N), (9)
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where
0 if s >0,
6(0,5) =< 1+ |logd| ifs=0,
1 if s < 0.

Proof. Note that the condition on b is equivalent to a > 0. If we make sure C'(k,b) > 1 then
the right hand side is at least 1 when § < y so we may assume that § > y. Take z = x +iy.
By Lemma 3, f/(z) has the same distribution as ¢’ ,(z). We put u; := log Im(g_(x + iy))

‘g ( )’ < e\u—u1|
19,1
since |0, log |g;(2)|| < 1 by (7). Because ¢,y < 1, there is a constant ¢ > 1 such that u; < c.

and observe that

)

Therefore,

P ()2 e < Y P |[g7, ()] = oy~
j=llogy]

since logy < uy < ¢ implies there is an integer j between [log y| and 0 such that |j—u;| < c.

By the Schwarz lemma, y|¢'(2)| < Im(g(2)) if g : H — H is holomorphic, so the above gives

Pl ()2 h ] < 3 P [197,(2)] = 3y (10)

j=[logd]
By scale invariance, g’Tj(z)(z) has the same distribution as g}o(e,,-z)(e_j z). Hence
E [y%e 7|9t ()| = y°€ B |l oimy e 72| < Fofe72),
where F} is as in Theorem 4. Thus we get
P (g7, (2)| = 0y~ | = P lgh ()5 > 1]

E ||, (2)|"y"07]
< S Fy(e7iz).

IA

Since j > logd > log y the imaginary part of e~z remains below 1 so we get by Theorem 4
Fy(e™2) = (1 + 22 /yH)Pe M,

Consequently, by (10)

Plg () = eoy™'] < (1+a2/y*)6" Z e/,

j=[logd]
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If a = A, the sum is bounded by 1+ |logd| = 6(5,0). If a > A, the sum is bounded by
the constant (1 — e*~%)~!, which only depends on s and b, and (d,a — \) = ¢ If
a < X the sum is bounded by (1 —e**)71§%* and 6(5,a — \) = 1. Therefore, if we put
C(k,b) =1+ |a— A(1 — e 1**)~1 we have for all choices of 8,y

P ||f{(x)| = 0y~ | < Clw,0)(1 +2°/y*)"(y/5)0(6,a — N).

Put & = e 0 to get (9) with C(x,b) = C(k,b)(e 4 e?(c + 1)).
[l

The following theorem shows that f,(0) = f,(£(t)) exists as a radial limit and is contin-

uous.

Theorem 6. Define
H(y,t) == filiy), y>0,t€[0,00).

If k # 8, then a.s. H(y,t) extends continuously to [0,00) x [0, 00).

Proof. Fix k # 8. By scale invariance, it suffices to show continuity of H on [0, c0) x [0, 1).

For j,k € N, with k£ < 2% we define the rectangle
R(j k) = 27771279 x [k27%, (k + 1)27],
and put
A(j. ) = diamm H(R(j.)).

We take b = (8 + k)/(4k) < 1 +4/k and let @ and X be given by (8) with v = 1. Then
A =2+ (k—8)%/(16k) > 2 so we can pick ¢ such that 0 < o < (XA — 2)/ max{a, A\}. To

begin with, we want to show that

oo 2%7-1
P[d(j, k) > 2777] < . (11)
7=0 k=0

Fix a pair (j, k). Set ty = (k + 1)27% and inductively,
tper 1= sup{t < t, : |E(t) — (L) =277}
Let N be the least n € N such that ¢, <ty — 2%, set to 1=ty — 27% = k27% and

t, = max{t,, to}
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The scaling property of Brownian motion shows that there is a constant p < 1, independent
of j and k, such that P[N > 1] = p and the Markov property gives P[N >m+ 1| N >
m] < p. Thus, P[N > m] = p™.

For every s > 0, the map fs is measurable with respect to the o-algebra generated by
&(t) for t € [0, s] while £, is determined by £(t) for ¢ > t¢,. The strong Markov property
then gives for every n € N, s € [too,to] and § > 0

P [yfgn(zsz)\ > 6|4, = s] - [|f5’(i2’j) > 5]

which yields

~

P[|ﬂn(@'2—1)|>5|£n>tm] — E[P[H(' )|>6|t]|fn>too]
< SupP[Z |>5]
5€(0,1]

Therefore, we get the estimate
p [Eln eN:|ff (i27) > 5]

<P {|fgw(¢2*j)| > 5} + ip[{n >t ]P [|fgn(¢2*j>| =54, > too]

n=0

< (1+E[N) sup P [|f1:27)] > 4]

s€(0,1]

< O(1) sup P [|f;(i2—j)| > 5} . (12)

a s€(0,1]

Note that a — A = (k? — 64)/(32k). If kK > 8, then a > X and Corollary 5 gives

sup P (171279 > 27277 (] < 02 7=+ < 0(1)2776+), (13)

s€(0,1]

for some € = €(k) > 0, since 0 < (A —2)/a. If k < 8, then a < A and Corollary 5 gives

sup P [1£16279)] > 22797/7] < 02 0 <o,
s€(0,1]

for some € = €(k) > 0, since 0 < (A —2)/A. Now let S be the rectangle
S = {o iy o] <294 y e pit 2.

We want to show that

c | i (9 (15)

MIT 2009 8 Hoeskuldur Petur Halldorsson



The SLE trace is a continuous path

and

fi ()N fi  (S)#0 VYneN. (16)
Let ¢ € [tpy1,t,] and y € [27797,277]. Then we can write

H(y,t) = fuliy) = fip, (95,2 (fiiy)) = §(Gnsn))

N

We will prove (15) by showing that g,gn+1(ﬁ(iy)) —&(tny1) € S. Define ¢(s) = g.(fi(iy)) for
s <t. Then ¢(t) = iy + £(t) and by (1)

0s6(s) = 2(e(s) — &(s)) 7

Note that 9,Im(¢(s)) < 0 and hence Im(¢(s)) > Im(p(t)) > 27971, This gives |9,0(s)| <
20%2 and since |t — 41| < 27% we then get |¢(f,41) — (1) < 2277, Since |€(t) — E(tnyq] <
217 we get

g,gn+1(ﬁ(iy)) — &(tng1)| = Otns1) — O(t) + iy + &(t) — E(fngr) €S

which gives f,(iy) € fan(S) and verifies (15). If we take ¢t = #, in the above we get
f,gn (iy) € f£n+1<S) which verifies (16). By the Koebe distortion theorem ([Pom92, 1.3])
|f1(2)|/1f/(i277)| is bounded by some constant (independent of j and t) if z € S and thus

we have

diam(f,(S)) < O(1)27|f{(i277)|.
Therefore, we get from (15) and (16)
N . ' N .
d(j.k) < ) diam(f; (5) < 0127 Y| (27)]
n=0
< O(1)27/Nmax{|f] (i277)]: n
By (12), (13) and (14) we get

Pld(j, k) >277] < P [o<1)2-ijax{|fgn(z‘2—J)| n=0,1,...,N} > z—ja]

A\

PlO(1)N > %] + P [max{\ffn(iZ’jﬂ n=0,1,...,N} > 21‘2*1‘0/3'2]
pJ'Q/O(l) + 0(1)2—j(2+6) < 0(1)2—3'(24-6)

IN

which proves (11).
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A consequence of (11) is that a.s. there are at most finitely many pairs j, k € N with
k < 2% —1 such that d(j, k) > 2779, Thus we have d(j, k) < C(w)277° for all j, k, where the
constant C'(w) is random. Let (y/,#) and (y”,t”) be points in (0,1)%. Let j; be the largest
integer less than min{—log, y', —log, y”, —3[t'—t"|}. Theny',y” < 277" and |t —t"| < 27271

so we get the estimate

H(y' ) = Hy"")] < (d(j, k) + d(j. k) < O(1)C(w)2™,
J=i
where R(j, k}) is a rectangle meeting the line t = ¢ and R(j, k7) is a rectangle meeting the
line t = ¢”. This shows that for every ¢y € [0, 1) the limit of H(y,t) as (y,t) — (0,%o) exists
and thereby extends the definition of H to a continuous function on [0, 00) x [0,1).
O

It follows from [LSW] that the theorem holds also when x = 8.

Now we get a criterion for hulls to be generated by a continuous path.

Theorem 7. Let £ : [0,00) — R be continuous and let g; be the corresponding solution to
(1). Assume that B(t) == lim,~ o g; '(£(t) + 4y) exists and is continuous for all t € [0, 0).
Then g; ' extends continuously to H and H, is the unbounded connected component of
H\ 5(]0,t]) for every t € [0,00).

In the proof, we will need the following basic properties of conformal maps. Suppose
g : © — H is a conformal homeomorphism. If a : [0,1) — Q is a path such that the
limit {; = lim; ~ «(t) exits, then Iy = lim,; » g(a(t)) exists too. (It is important that H is
a nice domain.) Moreover, lim; -1 g”*(tly) exists and equals l;. Therefore, if & : [0,1) —
) is another path such that lim; ~ &(t) exists and lim; ~ g(a(t)) = lim¢ ~ g(&(t)), then
lim; ~ a(t) = lim; ~ &(t). A proof of these statements can be found in [Pom92, Proposition
2.14] and [AhI73, Theorem 3.5].

Proof. Let S(t) C H be the set of limit points of g; *(¢) as t — &(¢) in H. Fix ¢y > 0 and
assume zg € S(to). We will show that zy € 5([0,%)) and hence 2y € 5([0,to]). Fix some
e > 0. Put

t":=sup{t € [0,t] : K; N D(29,€) = 0},
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where D(zg, €) is the open disk of radius € about z;. To begin with, we show that

B(t") € D(zo,¢). (18)

Since zg € S(to), D(z0,€) N Hy, # 0. Take p € D(zg,€) N Hy, and let p' € Ky N D(zo,¢€)
(this set is nonempty by the definition of ¢’ and the fact that zo € K;,). Let p” be the first
point of the line segment from p to p’ which is in K. We will show that 5(¢') = p”. Let L
be the line segment [p, p”) and note that L C Hy. Then gy (L) is a curve in H terminating
at a point © € R. If x # £(t'), then g,(L) terminates at points z(t) # £(t) for all t < ¢’
sufficiently close to t’. Because ¢, (p”) has to hit the singularity £(7) at some time 7 < ¢/,
this implies p” € K; for some t < t’. But this contradicts the definition of ¢ and hence

L of H cannot

shows that x = £(t'). Now §(t') = p” follows because the conformal map g,
have to different limits along two arcs with the same terminal point.

Now we have established (18) and since ¢ > 0 was arbitrary, we conclude that z, €
5([0,t0)) and hence z € ([0, to]). This gives S(t) € 3([0,]) for all t > 0. Now we argue
that H; is the umbounded component of H\m First, H; is connected and disjoint
from m On the other hand, as the argument in the previous paragraph shows,
OH; N H is contained in m Therefore, H; is the unbounded connected component
of H\ m = H \ £([0,1]). Since § is a continuous path, it follows from [Pom92,
Theorem 2.1] that g; * extends continuously to H, which also proves that S(t) = {3(t)}.

]
Now we have all the results needed to prove:

Theorem 8. The following statement holds almost surely. For every t > 0 the limit

A(t) = lim_fi(2)

z—0,z€H

exists, v : [0,00) — H is a continuous path and H, is the unbounded component of H \

’7([07t“'

Proof. By Theorem 6, a.s. lim, o ft(zy) exists for all ¢ and is continuous. Therefore we
can apply Theorem 7 and the result follows.
O
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